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Clustering multiple categorical data
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ordering (e.g., animal features)

• Goal: identify a clustering structure in the data

• Heuristic framework: measure distances
between observations
? K-modes (Huang, 1998)

? Hamming distance-vector algorithm
(Zhang et al., 2006) finds clustering
patterns using the Hamming distance

• Model-based clustering: latent class analysis
(Goodman, 1974; Celeux and Govaert, 2015)

Our approach

3 Family of probability mass functions built upon the Hamming distance

3 Model-based clustering based on a mixture of finite mixture of Hamming distributions

3 Provide full posterior inference on the number of clusters and their structure
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A bit of notation

• X = (X1, . . . ,Xp)> is a vector of p nominal categorical variables, or attributes

• Each variable j, for j = 1, ..., p, assumes mj possible levels (categories) or modalities,
over the finite set Aj = {aj1, . . . , ajh, . . . , ajmj}

• x = (x1, . . . , xp)> is the vector of observed modalities

• Categorical sample space
Ωp =

{
x = (x1, . . . , xp)>|x1 ∈ A1, . . . , xp ∈ Ap

}
= A1 × A2 × ...× Ap

• Hamming distance: number of attributes whose modalities are different

Hamming distance between two points in Ωp

d(xi, xh) =

p∑
j=1

1− δxij

(
xhj
)

where δxij

(
xhj
)

=

{
1 if xij = xhj

0 if xij 6= xhj

x1 = [♣,♥,F] x2 = [�,♥,♠]

d(x1, x2) = 2

SISBAYES 2025 Model-based clustering of categorical data based on the Hamming distance Lucia Paci (UCSC)



Hamming distribution

• center parameter c = (c1, . . . , cp)> ∈ Ωp

• scale parameter σ = (σ1, . . . , σp)>, with σj > 0, j = 1, . . . , p

Proposition 1

The function

p(x | c,σ) =

p∏
j=1

(
1 +

mj − 1
exp(1/σj)

)−1

exp

{
−

1− δcj (xj)

σj

}

is a probability mass function (p.m.f.) on Ωp, i.e.,
∑

x∈Ωp
p(x | c,σ) = 1

A random vector X = (X1, . . . ,Xp) with support Ωp follows an Hamming distribution with
center c and scale σ if its p.m.f. for x ∈ Ωp is given by p(x | c,σ) and we write

X | c,σ ∼ Hamming(c,σ)

• When σj = σ > 0, ∀j, p(x | c, σ) ∝ exp

{
−d(c, x)

σ

}
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Hamming distribution
Example

Figure: P.m.f. of p = 2 categorical variables with different values of c and σ.

• The center represents the unique mode of the distribution
• The scale regulates the heterogeneity of the distribution (e.g., link with Gini’s and

Shannon’s indexes)
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Bayesian inference

• Sampling model: Xi | c,σ iid∼ Hamming(c,σ), i = 1, . . . , n

• Inference on c
I Prior: cj

iid∼ U{1,mj} j = 1, . . . , p

I Full conditional probabilities: p(cj|rest) ∝ exp

{
−

n−
∑n

i=1 δcj (xij)

σj

}
• Inference on σ

I Prior (Hypergeometric Inverse Gamma): σj | u, v iid∼ HIG(u, v) j = 1, . . . , p, where

f (σj | u, v) =
m(u+v)

j (v + 1)

2F1 (1, u + v; v + 2; (mj − 1)/mj)

(
1 +

mj − 1
exp (1/σj)

)−(u+v)

exp

(
−

v + 1
σj

)
1
σ2

j

where 2F1(·, ·; ·; ·) is the hypergeometric function.

I Full conditional: σj | rest ∼ HIG(u∗, v∗), where

u∗ = u +
∑n

i=1 δcj (xij) and v∗ = v + n−
∑n

i=1 δcj (xij)

• The marginal likelihood of the data is available in a closed-analytical form.
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Hamming Mixture Model

HMM

h(xi | c1, . . . , cL,σ1, . . . ,σL,π, L) =
L∑

l=1

πl p (xi | cl,σl)

• L: number of components

• πl: mixing weight - probability that observation i belongs to component l
satisfies

∑L
l=1 πl = 1 and 0 < πl < 1

• p (xi | cl,σl): mixture kernel - Hamming p.m.f. of component l

• cl = (c1l, . . . , cpl)
>: component-specific center

• σl = (σ1l, . . . σpl)
>: component-specific scale
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How do we choose L?

• L is fixed: fit the model with different values of L and select the “best” one by using
information criteria, e.g., BIC, DIC, ICL (Biernacki et al., 2010; Celeux and Govaert, 2015)

• L is random: a transdimensional sampler is needed for posterior inference

I popular algorithm (but challenging) is the reversible jump MCMC (Green, 1995)

I recent (painless!) alternatives – mixtures of finite mixtures –
exploiting the link between finite and infinite mixture: Chinese restaurant process
sampler (Miller and Harrison, 2018), telescoping sampler (Frühwirth-Schnatter et al.,
2021), blocked Gibbs sampler (Argiento and De Iorio, 2022)
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Prior on mixing weights

• Following Argiento and De Iorio (2022), the HMM can be framed in a BNP setting:
? infinite number of latent components
? only a finite number is used to generate the observed data

• We assign a prior distribution on the mixing weights by normalization:

π1 =
W1

T
, . . . , πL =

WL

T
, T =

L∑
l=1

Wl

W1, . . . ,WL, | L, γ iid∼ Gamma(γ, 1)

⇒ Equivalent to: π1, . . . , πL | L, γ ∼ DirichletL(γ, . . . , γ)

• We assume a random number of components L ∼ qL
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Clustering assignment

• Latent allocation variables z1 . . . , zn , where zi ∈ {1, . . . , L}

• Observation xi belongs to component l⇔ zi = l

• zi | W1, . . . ,WL
iid∼ Multinomial(W1/T, . . . ,WL/T)

• z∗1 , . . . , z
∗
K K ≤ L, unique values of allocations

• ρ := {C1, . . . ,CK}: partition of K clusters induced by z∗1 , . . . , z
∗
K , where

Ck = {i : zi = z∗k } and nk = |Ck|, for k = 1, . . . ,K

• Prior of ρ: exchangeable partition probability function (eppf; Pitman 1995)

p(ρ) = p(n1, . . . , nK) ∝
K∏

k=1

Γ(γ + nk)

Γ(γ)

• The prior on K is also available in a closed analytical form
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HMM wrap up

xi | zi, c1, . . . , cL,σ1, . . . ,σL, L
ind∼ Hamming(xi | czi ,σzi ) i = 1, . . . , n

zi | W1, . . . ,WL, L
iid∼ Multinomial(W1/T, . . . ,WL/T) i = 1, . . . , n

Wl | L, γ iid∼ Gamma(γ, 1) l = 1, . . . , L

cl | L iid∼ U{1,mj} l = 1, . . . , L

σl | L iid∼ HIG(u, v) l = 1, . . . , L

L | Λ ∼ Poi0(Λ)

Λ ∼ Gamma(a, b)

• Connections to Latent Class Models: the HMM is a novel parametrization of the
parsimonious LCM (Celeux and Govaert, 2015) with two main benefits:

3 more straightforward interpretation of the parameters
3 random L, so full posterior inference on the number of clusters and their structure

• Posterior sampling
• Blocked Gibbs sampler, a conditional algorithm of Argiento and De Iorio (2022)
• Transdimensional moves which are automatic and implied by the prior process
• Separate sampling of the weights and parameters corresponding to the allocated vs

non-allocated components
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USPS data analysis

• Handwritten digits from the US postal services (a subset of the USPS data from UCI
machine learning repository)

• 1,756 images of the digits 3, 5 and 8 which are the most difficult digits to discriminate

• Each digit is a 16 × 16 image of m = 6 levels of gray, i.e.,
Xj ∈ { }, represented as a p = 256 dimensional vector

Figure: A sample of handwritten digits.
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USPS data analysis
Results

7 Latent class model with fixed K: no way to select the number of clusters
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Figure: Values of the information criteria for fixed values of K; results obtained from the R package Rmixmod.
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USPS data analysis
Results

3 Hamming mixture model with random number of components L

Figure: Posterior similarity matrix.
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USPS data analysis
Results

3 Hamming mixture model with random number of components L

Figure: Posterior mode of the center parameters for each cluster.

SISBAYES 2025 Model-based clustering of categorical data based on the Hamming distance Lucia Paci (UCSC)



Simulation study with dependent variables

• nk = 75, k = 1, . . . ,K = 3, and mj = 4 with j = 1, . . . p = 15
• Generating categorical data under a graphical modeling through Gaussian latent variables

(Castelletti et al., 2024)
• Within each cluster, variables dependence structure based on a network with decreasing

levels of sparsity, i.e., increasing strength of association among the variables
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(Castelletti et al., 2024)
• Within each cluster, variables dependence structure based on a network with decreasing

levels of sparsity, i.e., increasing strength of association among the variables

●●●●●●●

●

100% sparsity 85% sparsity 70% sparsity 50% sparsity

4
6

8
10

12
K̂

Figure: Estimated K under the HMM.

SISBAYES 2025 Model-based clustering of categorical data based on the Hamming distance Lucia Paci (UCSC)



Beyond the local independence

• Accounting for the dependence among the p categorical variables also within the clusters

• Consider a mixture of HMMs: enriched HMM

• Enriched priors (Consonni and Veronese, 2001) for BNP: enriched Dirichlet (Wade et al.,
2011), enriched Pitman–Yor process (Rigon et al., 2025), enriched Norm-IFPP (Franzolini
et al., 2023)

• Connections to mixtures of LCMs (Malsiner-Walli et al., 2025)
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Beyond the local independence

Enriched HMM

h(xi | c,σ,π,η1, . . . ,ηL, L, S1, . . . , SL) =
L∑

l=1

πl

Sl∑
s=1

ηls p (xi | cls,σls)

• L: number of outer components

• πl: outer mixing weight

• Sl: number of inner components in outer component l

• ηls: inner mixing weight

• p (xi | cls,σls): mixture kernel - Hamming p.m.f.

• cls = (c1ls, . . . , cpls)
>: component-specific center parameter of variable j in outer

component l and inner component s

• σls = (σ1ls, . . . σpls)
>: component-specific scale parameter of variable j in outer

component l and inner component s

• Two-level clustering of observations (outer and inner clusters)
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Beyond the local independence

Hamming distribution HMM Enriched HMM
K∗ = 1, S∗k = 1 K∗ = 2, S∗k = 1 K∗ = 2, S∗k = 3

independent variables local independence stronger association

Figure: Cramer’s V matrix of p = 15 variables computed over n = 450 data points with mj = 4 categories.
Data simulated assuming σ = 0.4.
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Simulation study with dependent variables

• nk = 75, k = 1, . . . ,K = 3, and mj = 4 with j = 1, . . . p = 15
• Generating categorical data under a graphical modeling through Gaussian latent variables

(Castelletti et al., 2024)
• Within each cluster, variables dependence structure based on a network with decreasing

levels of sparsity, i.e., increasing strength of association among the variables

Figure: Estimated K under the Enriched HMM.
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Summary

• A new probability mass function, based on the Hamming distance, to describe random
vectors with support on a categorical space

• Conjugate Bayesian inference on the parameters of the Hamming distribution

• Hamming mixture model for clustering categorical data: finite mixture model with a
random number of components

• Gibbs sampling strategy to provide full posterior inference of the cluster structure and the
group-specific parameters and multiple imputation of missing values

• Theoretical results on model identifiability and consistency of the number of components

• Empirical analysis showed good accuracy in recovering the underlying clustering

• Enriched Hamming mixture model to overcome the local independence assumption

• Ongoing: study the properties of the enriched HMM (e.g., identifiability) and its link with
a multivariate extension of the Hamming distribution
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Thank you for your attention
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