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Why Reinforcement Learning?

Reinforcement Learning (RL) is a Machine Learning paradigm for

decision-making. It has been studied since the 1980s (Watkins, 1989), but in the

last decade it has become useful and widely popular in several fields:

• Games: from chess to modern video games;

• Healthcare: supports personalized medicine (e.g. dynamic

treatment regimes);

• AI: trains and refines large AI models (e.g., ChatGPT) via RL from

human feedback.

We aim to provide a method to approach Statistical RL from a full

Bayesian perspective. This requires the formulation a new algorithm for

likelihood-free inference: the LF-IBIS.
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Reinforcement Learning



Reinforcement Learning (Sutton and Barto, 2018)

Main characters:

• Agent – blue dot

• Environment – the grid
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Reinforcement Learning (Sutton and Barto, 2018)
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Step 1: Agent starts at top-left.

At each step n...

• The agent can take an

action an ∈ {l , r , t, d}
(left, right, top, down).

• Its policy π is a

probability distribution

over {l , r , t, d}.
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Reinforcement Learning (Sutton and Barto, 2018)
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Step 2: Moves right. Reward = -1

At each step n...

• The environment

changes its state sn
following probabilistic

rules.

• Its behaviour depends

on previous actions

and a probability

distribution governed

by parameters µ.
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Reinforcement Learning (Sutton and Barto, 2018)
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Step 3: Moves right again. Reward = -1

At each step n...

• To a pair (an, sn)

corresponds a reward

rn.
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Reinforcement Learning (Sutton and Barto, 2018)
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Step 4: Moves down. Reward = -1

AIM:

• The agent wants to

reach the goal state

while maximizing the

reward.

• BUT its does not know

the environment

behaviour and µ.
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Reinforcement Learning (Sutton and Barto, 2018)
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Step 5: Reaches goal! Reward = +10
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Statistical Framework 1/2

• The interactions agent/environment generate a history

x = {(an, sn, rn)}Nn=1

• An ∈ A and Sn ∈ S are (discrete) random variables

• The reward is a function Rn : (A× S) → R

• SOME ASSUMPTIONS:

A1 x is the realization of Markov Decision Process:

Sn+1 ⊥⊥ {sj , aj}n−1
j=1 | (an, sn)

and the environment dynamic is described by transition matrices Pn;

A2 The process is homogeneous

Sn ≡ S,An ≡ A,Pn ≡ P ∀n
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Statistical Framework 2/2

• The elements of the environment’s transition matrix

Pr(s ′ | s, a, µ)

• In classical RL, the agent uses the Bellman equation (Bellaman, 1958) to

evaluate the cumulative reward through the value function

Vπ(s) =
∑
a

π(a | s)
∑
s′

Pr(s ′ | s, a, µ)[r(a, s ′) + γVπ(s
′)]

• An optimal policy π∗(a | s) is any policy that allows to reach the

optimal value V ∗(s) = max
π

Vπ(s) for each state.
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Statistical Framework 2/2

• The elements of the environment’s transition matrix

Pr(s ′ | s, a, µ)

• In classical RL, the agent uses the Bellman equation (Bellaman, 1958) to

evaluate the cumulative reward through the value function

Vπ(s) =
∑
a

π(a | s)
∑
s′

Pr(s ′ | s, a, µ)[r(a, s ′) + γVπ(s
′)]

• An optimal policy π∗(a | s) is any policy that allows to reach the

optimal value V ∗(s) = max
π

Vπ(s) for each state.

- AIM Computing π∗(a | s)
- PROBLEM Pr(s ′ | s, a, µ)is unknown
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Bayesian Reinforcement Learning

• Data:

x = x1:N = {(a1, s1, r1), ..., (aN , sN , rN)}︸ ︷︷ ︸
observed history

• Likelihood:

Pr(X = x | µ, π) = ρ(s1)
N∏

n=1

π(an | sn) Pr(Sn+1 = sn+1 | an, sn, µ)

L(µ|x) ∝ Pr
(
S1:N = s1:N |a1:N , µ

)︸ ︷︷ ︸
f (x|µ)

=
N∏

n=1

Pr
(
Sn+1 = sn+1|sn, an, µ

)
• Goal in Full Bayesian RL:

p(µ | x) ∝ p(µ)f (x1:N | µ)
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Complex posterior: why?

p(µ | x) ∝ p(µ)f (x1:N | µ)

The posterior uncertainty around µ can be propagated to

• The value function Vπ

• The optimal policy π∗
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Complex posterior: why?

p(µ | x) ∝ p(µ)f (x1:N | µ)

The posterior uncertainty around µ can be propagated to

• The value function Vπ

• The optimal policy π∗

Problems:

1. Online update: data are not available in advance, but revealed step

by step via interaction with the environment;
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Complex posterior: why?

p(µ | x) ∝ p(µ)f (x1:N | µ)

The posterior uncertainty around µ can be propagated to

• The value function Vπ

• The optimal policy π∗

Problems:

1. Online update: data are not available in advance, but revealed step

by step via interaction with the environment;

2. Intractable likelihood: the environment’s behaviour does not

always have an analytical formulation, but it can be simulated

through a computer program.
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Likelihood-free Iterated Importance Sampling

To address these challenges, we propose a new likelihood-free algorithm:

LF-IBIS.

• A hybrid algorithm that combines

1. Approximate Bayesian Computation (ABC)

2. Iterated Batch Importance Sampling (IBIS)

• Enables RL in both

• online and offline settings

• model-based and model-free settings
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Likelihood-free inference: ABC (Sisson et al., 2018)

At each iteration s ∈ {1, ...,S}

1. Draw µ(s) from p(·)︸︷︷︸
prior

2. Simulate y from f (·|µ(s))︸ ︷︷ ︸
simulator

3. Accept µ(s) if d(x , y) ≤ ϵ

pϵ(µ | x)︸ ︷︷ ︸
approximate posterior

∝ p(µ)
1

Mµ

Mµ∑
m=1

1[d(yµ
m, x) ≤ ϵ]︸ ︷︷ ︸

approximate likelihood

ABC approximate likelihood

f (x | µ) ≈ 1

Mµ

Mµ∑
m=1

K
(
d(yµ

m , x); ϵ
)

f (x | µ) ≈ 1

Mµ

Mµ∑
m=1

K
(
d(η(yµ

m), η(x)); ϵ
)
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Sequential Monte Carlo ABC (SMC-ABC) (Del Moral et al., 2012)

p(µ)
pϵ1(µ | x) pϵ2(µ | x)

· · ·
pϵK (µ | x)

• SMC-ABC iterates Importance Sampling (IS) steps

• The algorithm uses a sequence ϵ1 ≥ ϵ2... ≥ ϵ

• At i-th iteration, the proposed particles are samples from pϵi−1 and

the output is a sample from pϵi
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Sequential Monte Carlo ABC (SMC-ABC) (Del Moral et al., 2012)

1. Reweighting:

Update weights

ω
(s)
i =

target

proposal
= ω

(s)
i−1 ×

∑M
m=1 K

(
d(x, y

(s)
m ); ϵi

)∑M
m=1 K

(
d(x, y

(s)
m ); ϵi−1

)

2. Resampling:

Resample S particles using weights (ω
(1)
i , ..., ω

(S)
i ) as probabilities

3. Moving:

Move each µ
(s)
i using a Markov kernel of invariant density pϵi (µ | x)
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Iterated Batch Importance Sampling (Chopin, 2002)

p(µ)
p(µ | x1)

p(µ | x1, x2)

· · ·
p(µ | x1, ...xN)

• IBIS iterates IS steps

• The output of each step i is a weighted sample from p(µ | x1:i )

• At i-th iteration, the proposal distribution is p(µ | x1:i−1) and the

target distribution is p(µ | x1:i )
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Iterated Batch Importance Sampling (Chopin, 2002)

1. Reweighting:

Update weights

ω
(s)
i =

target

proposal
= ω

(s)
i−1 ×

f (x1:i | µ)
f (x1:i−1 | µ)

= ωi−1 × f (xi | x1:i−1, µ)

2. Resampling:

Resample S particles using weights (ω
(1)
i , ..., ω

(S)
i ) as probabilities

3. Moving:

Move each µ
(s)
i using a Markov kernel of invariant density p(µ | x1:i )

Idea:

f (xn+1 | x1:n, µ) ≈
∑M

m=1 K
(
d(y1:n,m), x1:n); ϵ

)∑M
m=1 K

(
d(y1:n−1,m), x1:n−1); ϵ

)︸ ︷︷ ︸
ABC-like estimate
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LF-IBIS Algorithm

Algorithm 1 LF-IBIS

1: IS-ABC: µ
(s)
1
∼ p(·); y(s)

1,m
∼ f (· | µ(s)

1
) for m ∈ {1, ...M}; ω(s)

1
(ϵ1) = 1

M

∑M
m=1 K(d(x1, y

(s)
1,m

); ϵ1); n ← 1

2: while n ≤ N or ϵn > ϵ do

3: if no new agent-env interactions then

4: Find a new ϵ∗ adaptively

5: Update weights:

ω
(s)
n (ϵ∗) = ω

(s)
n (ϵn) ·

∑M
m=1 K(d(x1:n, y

(s)
1:n,m

); ϵ∗)∑M
m=1

K(d(x1:n, y
(s)
1:n,m

); ϵn)

6: ϵn ← ϵ∗

7: else

8: Simulate and append y
(s)
n+1,m

∼ f (· | µ(s)
n , y

(s)
1:n,m

) for m ∈ {1, ...,M}

9: n ← n + 1, ϵn ← ϵn−1

10: Compute weights:

ω
(s)
n = ω

(s)
n−1
·

∑M
m=1 K(d(x1:n, y

(s)
1:n,m

); ϵn)∑M
m=1

K(d(x1:n−1, y
(s)
1:n−1,m

); ϵn)

11: Resample by using ω
(1)
n ...ω

(S)
n

12: Move µ(s) through an MCMC kernele with acceptance ratio:

ar =
p(µ∗)

∑M
m=1 K(d(x1:n, y

∗
1:n,m); ϵn)q(µ

∗, µ(s)
n )

p(µ
(s)
n )

∑M
m=1

K(d(x1:n, y
(s)
1:n,m

); ϵn)q(µ
(s)
n , µ∗)

13: Output: For each µ
(s)
n , compute policy π∗(a | s) = arg maxπ Vπ (s;µ

(s)
n )
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LF-IBIS Algorithm

Algorithm 2 LF-IBIS

1: IS-ABC: µ
(s)
1
∼ p(·); y(s)

1,m
∼ f (· | µ(s)

1
) for m ∈ {1, ...M}; ω(s)

1
(ϵ1) = 1

M

∑M
m=1 K(d(x1, y

(s)
1,m

); ϵ1); n ← 1

2: while n ≤ N or ϵn > ϵ do

3: if no new agent-env interactions then

4: Find a new ϵ∗ adaptively

5: Update weights:

ω
(s)
n (ϵ∗) = ω

(s)
n (ϵn) ·

∑M
m=1 K(d(x1:n, y

(s)
1:n,m

); ϵ∗)∑M
m=1

K(d(x1:n, y
(s)
1:n,m

); ϵn)

6: ϵn ← ϵ∗

7: else

8: Simulate and append y
(s)
n+1,m

∼ f (· | µ(s)
n , y

(s)
1:n,m

) for m ∈ {1, ...,M}

9: n ← n + 1, ϵn ← ϵn−1

10: Compute weights:

ω
(s)
n = ω

(s)
n−1
·

∑M
m=1 K(d(x1:n, y

(s)
1:n,m

); ϵn)∑M
m=1

K(d(x1:n−1, y
(s)
1:n−1,m

); ϵn)

11: Resample by using ω
(1)
n ...ω

(S)
n

12: Move µ(s) through an MCMC kernele with acceptance ratio:

ar =
p(µ∗)

∑M
m=1 K(d(x1:n, y

∗
1:n,m); ϵn)q(µ

∗, µ(s)
n )

p(µ
(s)
n )

∑M
m=1

K(d(x1:n, y
(s)
1:n,m

); ϵn)q(µ
(s)
n , µ∗)

13: Output: For each µ
(s)
n , compute policy π∗(a | s) = arg maxπ Vπ (s;µ

(s)
n )
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LF-IBIS Algorithm

Algorithm 3 LF-IBIS

1: IS-ABC: µ
(s)
1
∼ p(·); y(s)

1,m
∼ f (· | µ(s)

1
) for m ∈ {1, ...M}; ω(s)

1
(ϵ1) = 1

M

∑M
m=1 K(d(x1, y

(s)
1,m

); ϵ1); n ← 1

2: while n ≤ N or ϵn > ϵ do

3: if no new agent-env interactions then

4: Find a new ϵ∗ adaptively

5: Update weights:

ω
(s)
n (ϵ∗) = ω

(s)
n (ϵn) ·

∑M
m=1 K(d(x1:n, y

(s)
1:n,m

); ϵ∗)∑M
m=1

K(d(x1:n, y
(s)
1:n,m

); ϵn)

6: ϵn ← ϵ∗

7: else

8: Simulate and append y
(s)
n+1,m

∼ f (· | µ(s)
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(s)
1:n,m
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m=1

K(d(x1:n−1, y
(s)
1:n−1,m

); ϵn)

11: Resample by using ω
(1)
n ...ω

(S)
n

12: Move µ(s) through an MCMC kernele with acceptance ratio:
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p(µ∗)
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m=1 K(d(x1:n, y

∗
1:n,m); ϵn)q(µ

∗, µ(s)
n )

p(µ
(s)
n )
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m=1

K(d(x1:n, y
(s)
1:n,m

); ϵn)q(µ
(s)
n , µ∗)

13: Output: For each µ
(s)
n , compute policy π∗(a | s) = arg maxπ Vπ (s;µ

(s)
n )
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LF-IBIS: some details

As an ABC algorithm, LF-IBIS has some specific characteristics that

require the use of

• Specific kernel function

K
(
d(y

(s)
1:i,m, x1:i ); ϵi

)
=


1 if d(y

(s)
1:i,m, x1:i ) ≤ ϵi

e
−
d(y

(s)
1:i,m, x1:i )

ϵ2i if d(y
(s)
1:i,m, x1:i ) > ϵi

• Suitable criteria for adapting ϵ values

1. Effective Sample Size (ESS)

2. Number of Unique Particles (UP)

• Similarity criteria

1. Observation-based

d
(
η(y

(s)
1:i,m), η(x1:i )

)
=

1
√
2

√∑
a∈A

∑
s∈S

(√
qs′|(s,a) −

√
ps′|(s,a)

)2

2. Utility-based

d
(
η(y

(s)
1:i,m), η(x1:i )

)
=

∣∣∣∣Ux1:i − U
y
(s)
1:i,m

∣∣∣∣
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Toy example: Response-Adaptive Randomization (Deliu, 2021)

• The agent aims to allocate patients to treatment/placebo to

maximize the number of disease remissions: An ∈ A = {0, 1}

Sn = Rn =

{
1 if the n-th patient goes into remission

0 otherwise

• For each n under the same policy

π(An = 1 | Sn−1 = 0) = π(An = 1 | Sn−1 = 1) = π

• µ0 and µ1 are the remission probabilities in the control and in the

treatment group, respectively

• Environment’s responses are: Z0 ∼ Ber(µ0) and Z1 ∼ Ber(µ1),

where Z0 denotes Sn | An = 0 and Z1 denotes Sn | An = 1
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Some results

Figure 1: Posterior distributions for µ0 and µ1 (left) and π∗ (right) along with

true values.

TRUE POSTERIOR ; AR-ABC with full data; obs-based LF-IBIS with ESS.
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Some results

Figure 2: Posterior distributions for µ0 and µ1 (left) and π∗ (right) along with

true values.

TRUE POSTERIOR ; AR-ABC with full data; obs-based LF-IBIS with UP.
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Some results

Figure 3: Posterior distributions for β0 = logit(µ0) and β1 = logit(µ1)− β0

(left) and π∗ (right) along with true values.

TRUE POSTERIOR ; AR-ABC with full data; obs-based LF-IBIS with ESS.
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Theoretical results (WIP)

Heuristically, under some mild assumptions, one can argue that:

1. As ϵ → 0,M → ∞

f̃M,ϵ(xn+1 | x1:n, µ)︸ ︷︷ ︸
approximate reweighting factor

→ f (xn+1 | x1:n, µ)

2. As ϵ → 0, the kernel K
(
d(y , x); ϵ) converges to an indicator

function, and the proof of the convergence of the approximate

posterior to the true posterior applies (Prangle et al., 2018).
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Discussion and conclusion

• We propose a novel strategy for full Bayesian Reinforcement

Learning (fBRL).

• The approach relies on a new likelihood-free algorithm.

• The algorithm allows for continuous updating of estimates and

supports environments with black-box models.

• Its effectiveness was demonstrated empirically using a toy example.

• The method is flexible and can be extended beyond the RL setting.

• Future work will focus on several extensions:

• Handling batches of size greater than one.

• Developing adaptive strategies to address the

exploration–exploitation trade-off (WIP).

• Providing theoretical results and applying the method to real-world

scenarios (WIP).
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Details about experiments

• Final ϵ ≈ 0.02 (≈ 0.03 with different parametrization)

• S = 10000 (ESS); S = 50000 (UP)

• M = 50

• α = 0.98

• Initial length of the history 10, N = 48



Further results

Figure 4: Posterior distributions for µ0 and µ1 (left) and π∗ (right) along with

true values.

TRUE POSTERIOR ; AR-ABC with full data; utility-based LF-IBIS with ESS.
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