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Why Reinforcement Learning?

Reinforcement Learning (RL) is a Machine Learning paradigm for
decision-making. It has been studied since the 1980s (watkins, 1089), but in the
last decade it has become useful and widely popular in several fields:

e Games: from chess to modern video games;

e Healthcare: supports personalized medicine (e.g. dynamic
treatment regimes);

e Al: trains and refines large Al models (e.g., ChatGPT) via RL from
human feedback.

We aim to provide a method to approach Statistical RL from a full
Bayesian perspective. This requires the formulation a new algorithm for
likelihood-free inference: the LF-IBIS.
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Reinforcement Learning




Reinforcement Learning (suon and sano, 2015)

Main characters:

e Agent — blue dot

e Environment — the grid




Reinforcement Learning (suon and sano, 2015)

At each step n...

e The agent can take an
action a, € {/,r, t,d}
(left, right, top, down).

e |ts policy 7 is a
probability distribution
over {/,r,t,d}.

Step 1: Agent starts at top-left.



Reinforcement Learning (suon and sano, 2015)

At each step n...
-100

e The environment
n changes its state s,
-100 following probabilistic
~100 -100 rules.

e |ts behaviour depends

on previous actions

and a probability

distribution governed
Step 2: Moves right. Reward = -1 by parameters .



Reinforcement Learning (suon and sano, 2015)

-100

Step 3: Moves right again. Reward = -1

At each step n...

e To a pair (a,, s,)
corresponds a reward

.



Reinforcement Learning (suon and sano, 2015)

AIM:

e The agent wants to
. -100 reach the goal state
- while maximizing the
reward.

-1 | -1 1410

e BUT its does not know
the environment

Step 4: Moves down. Reward = -1 behaviour and .



Reinforcement Learning (suon and sano, 2015)

Step 5: Reaches goal! Reward = +10



Statistical Framework 1/2

e The interactions agent/environment generate a history

x = {(an, Sn; rn)}llyzl

e A, € Aand S, € S are (discrete) random variables
e The reward is a function R, : (A x S) = R

® SOME ASSUMPTIONS:

Al x is the realization of Markov Decision Process:
=il
Spt1 AL {517 aj}]:l I (aﬂvsﬂ)

and the environment dynamic is described by transition matrices Pp;
A2 The process is homogeneous

Sh=S, A, =A,P, =P Vn



Statistical Framework 2/2

e The elements of the environment’s transition matrix

Pr(s’ | s, a, 1)

e In classical RL, the agent uses the Bellman equation (Bellaman, 1958) to
evaluate the cumulative reward through the value function

Va(s) =Y _m(als)D_Pr(s'|'s,a,m)r(a,s) +Va(s)]

a

e An optimal policy 7*(a | s) is any policy that allows to reach the
optimal value V*(s) = max V,(s) for each state.
s



Statistical Framework 2/2

e The elements of the environment’s transition matrix

Pr(s’ | s, a, 1)

e In classical RL, the agent uses the Bellman equation (Bellaman, 1958) to
evaluate the cumulative reward through the value function

Vi(s) = Zﬁ(a | s) Z Pr(s’ | s,a, u)[r(a,s") + v Vr(s")]

a

e An optimal policy 7*(a | s) is any policy that allows to reach the
optimal value V*(s) = max V. (s) for each state.
™

- AIM Computing 7*(a | s)
- PROBLEM Pr(s’ | s, a, 11)is unknown



Bayesian Reinforcement Learning

e Data:
x=xp.n = {(a1,51,n), -, (an, sn, rv) }
observed history
e Likelihood:
N
Pr(X = x| u,m) = p(s1) Hﬂ(an | sn) Pr(Snt1 = Snt1 | an, Sny 1t)
n=1
N
L(p|x) o< Pr (51:,\, = 51;N|31:N,u) = H Pr (5,,+1 = s,,+1|s,7,a,7,u)
n=1

f(x|p)

e Goal in Full Bayesian RL:

p(p | x) o< p(p)f (xeon | 42)



Complex posterior: why?

p( | x) oc p(p)f(xun | 1)

The posterior uncertainty around p can be propagated to

e The value function V,

e The optimal policy 7*



Complex posterior: why?

p(u | x) oc p(u)f(xan | 1)

The posterior uncertainty around 4 can be propagated to

e The value function V.

e The optimal policy 7*

Problems:

1. Online update: data are not available in advance, but revealed step
by step via interaction with the environment;



Complex posterior: why?

p(p | x) oc p(p)f(xan | 1)

The posterior uncertainty around p can be propagated to

e The value function V,

e The optimal policy 7*

Problems:

1. Online update: data are not available in advance, but revealed step
by step via interaction with the environment;

2. Intractable likelihood: the environment’s behaviour does not
always have an analytical formulation, but it can be simulated
through a computer program.



LF-1BIS




Likelihood-free Iterated Importance Sampling

To address these challenges, we propose a new likelihood-free algorithm:
LF-IBIS.

e A hybrid algorithm that combines

1. Approximate Bayesian Computation (ABC)
2. lterated Batch Importance Sampling (IBIS)

e Enables RL in both

e online and offline settings
e model-based and model-free settings



Likelihood-free inference: ABC (sison et . 2015

At each iteration s € {1,...,S}

1. Draw pu(®) from p(-)
. et
prior

2. Simulate y from f(-|u(®))
—_———

simulator

3. Accept ul) if d(x,y) <€

MH
e[, o Pl g 3 100 2) <

approximate posterior

approximate likelihood

ABC approximate likelihood

M
1 M

f(x | p) = VZK(d(yﬁ,x) €
(T

Fx | 1) ~ ZK n(x)); <)

10



Sequential Monte Carlo ABC (SMC-ABC) (e vorai et . 2012)

Pex (1 | X)

e SMC-ABC iterates Importance Sampling (IS) steps

e The algorithm uses a sequence €1 > €3... > €

e At j-th iteration, the proposed particles are samples from p., , and
the output is a sample from p,,

11



Sequential Monte Carlo ABC (SMC-ABC) (e vorai et . 2012)

1. Reweighting:
Update weights

b (s)y.
K(d m ) €
o = et o T K(dlyn)ic)

- - M
picbesa) S K(d(x,y5)i€i1)
2. Resampling;:
Resample S particles using weights (wfl). W,(S)) as probabilities
3. Moving:

(s)

Move each f;’ using a Markov kernel of invariant density p, (| x)

12



Iterated Batch Importance Sampling (cuopin. 2002)

,D(/L | Xl,...XN)
p X1, X
p(p, ‘ X1) (M | 59 2)

(1)
p(u N N

e IBIS iterates IS steps
e The output of each step i is a weighted sample from p(u | x1.;)

e At i-th iteration, the proposal distribution is p(u | x1.;—1) and the
target distribution is p(u | x1:;)

13



Iterated Batch Importance Sampling (cuopin. 2002)

1. Reweighting:
Update weights

(s)  target (s) f(xwi | p)
= = Ww: X —— = wj_1 X f i =1,
i proposal =L f (x| p) S (xi [ x:i-1, 1)

2. Resampling;:
(1)

Resample S particles using weights (w; W,(s)) as probabilities
3. Moving:

(s)

Move each ;" using a Markov kernel of invariant density p(u | x1:i)

Idea: y
Em:l K(d()/l:n,m)7 Xl:n); 6)
anﬂzl K(d(}/l:nfl,m)y Xl:nfl); 5)

ABC-like estimate

f(Xn+1 | Xl:m/‘) ~

14



LF-IBIS Algorithm

Algorithm 1 LF-IBIS

1:

. whilen < Norep > edo

G WD

[y

11:
12:

13:

@ © XN

15-ABC: () ~ p(-; yf)m ~ A D) form e {1, My oD (eq) = & M K(d(

if no new agent-env interactions then
Find a new e* adaptively
Update weights:

=M K(d(an, /VF”),,”)? €*)

ML Ky v )i en)

w®(e*) = w(ep) -

e +— €*
else

Simulate and append yﬁi)l o~ uff),yﬁz ) form € {1,..., M}

n<n+lep <€y

Compute weights:

M S .
@ _ SM L K(dsgns 7))ien)
“nt T -1t Uy 6)
Ym=1 KdO1:n—1: 7.0 1 )i €n)

Resample by using wE}) . .wﬁf)

Move ;4(5) through an MCMC kernele with acceptance ratio:

P(1*) ML K(dsns v )i emda(in® s u))

/J(NE,S)) M K(d(x:n,s Y};S,),7m): En)Q(NLS)- w*)

ar =

(s) (#),

Output: For each 11;,”, compute policy m* (a | s) = arg maxz Vi (si ppy

xl,y§fzﬁ); alp o e &

15



LF-IBIS Algorithm

Algorithm 2 LF-IBIS

1: is-aec: 1) ~ p(.);y{fzn ~ A D) form e {1, My o () = & M Kl y§ D Sk clp @ o &
2: whilen < Norep > edo

3: if no new agent-env interactions then

4: Find a new ¢* adaptively

5: Update weights:

M K@i 10 ) <)

SM_L K0 v ien)
6: €p «— €*
7: else
8: Simulate and append yﬁi)lﬁm ~ (| “ﬁf),yfn)_m> form € {1, ..., M}
91 n<n+1lep <+ €51
10: Compute weights:
M S .
(s) (s) Xm=1 K(d(x1:n, Yi n),m)' €n)
“nt T -1t oy )
St K@n—1: 91501 ) €n)
11: Resample by using w(nl)...wﬁs)
12: Move ;L(S) through an MCMC kernele with acceptance ratio:

p(n*) M, K(d(x1:n> Vi, m)i €n)a(ie™ "'("5))

P oM K(d0cgm ) ) ematinls), 1)

ar =

(®),

13: Output: For each ,A,Sf), compute policy 7* (a | s) = arg maxyr Vi (s; iy,

15




LF-IBIS Algorithm

Algorithm 3 LF-IBIS

1:

. whilen < Norep, > edo

G WD

[y

11:
12:

13:

@ © XN

15-ABC: () ~ p(-; yf)m ~ A D) form e {1, My oD (eq) = & M K(d(

if no new agent-env interactions then
Find a new e* adaptively
Update weights:

M KO vE) i)

ML Ky v )i en)

Wi (e*) = W (en) -

e +— €*
else

G e e o) ~ (- | ,Lﬁf), {Sg m) form € {1,..., M}

s
n+1,m
n<n+1lep <+ €p_1

Compute weights:

O Tem K(d(xt V) ):en)

SM L K1y )ien)

(OO

Resample by using wp, /.. .wpy

Move ,u(s) through an MCMC kernele with acceptance ratio:

p(n*)SM_| K(d(x1.0, Yip,m)i €n)a(n™, u(ns))

ar =
Pl M K(dOgm, W) ) emalns), %)

(s)

Output: For each 1,”, compute policy 7* (a | s) = arg maxy Vi (si p

)

xl,y§fzw); alp o e &

15




LF-IBIS: some details

As an ABC algorithm, LF-IBIS has some specific characteristics that
require the use of

e Specific kernel function
1 if () oxi) < €
K(d(yfi{m7x1;;);e;) = d(yl, mo XL:7)
52 q (s) . .
e i if d(ylzi’m7x1;,) > €
e Suitable criteria for adapting ¢ values
1. Effective Sample Size (ESS)
2. Number of Unique Particles (UP)
e Similarity criteria
1. Observation-based

d(n(/ ) ) = A D0 (Varies — vorien)

acAseS
2. Utility-based

U><1 i -V (s

l/m

d(n(ys) ) n(x1:)) =

16



Results




Toy example: Response-Adaptive Randomization (e, 201)

e The agent aims to allocate patients to treatment/placebo to
maximize the number of disease remissions: A, € A= {0,1}

1 if the n-th patient goes into remission
Sn =R, =

0 otherwise

e For each n under the same policy
7(Ap=1]|S-1=0)=7(A,=1|S,-1=1)=7

e 1ip and p are the remission probabilities in the control and in the
treatment group, respectively

e Environment's responses are: Zy ~ Ber(u) and Z; ~ Ber(u1),
where Z, denotes S, | A, =0 and Z; denotes S, | A, =1

17



Some results
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Figure 1: Posterior distributions for 110 and p1 (left) and 7™ (right) along with
true values.

: AR-ABC with full data; obs-based LF-IBIS with ESS.
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Some results
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Figure 2: Posterior distributions for po and p1 (left) and ©* (right) along with

true values.

; AR-ABC with full data; obs-based LF-IBIS with UP.
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Some results
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Figure 3: Posterior distributions for Sy = logit(jw0) and S1 = logit(u1) — Bo
(left) and 7* (right) along with true values.

: AR-ABC with full data; obs-based LF-IBIS with ESS.
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Theoretical results (WIP)

Heuristically, under some mild assumptions, one can argue that:

1. Ase -0, M —

7?M,e(XnJrl ‘ Xl:mﬂ) — f(XnJrl | Xl:na,U/)

approximate reweighting factor

2. As e — 0, the kernel K(d(y, x); €) converges to an indicator
function, and the proof of the convergence of the approximate
posterior to the true posterior applies (Prangle et al., 2018).

21



Discussion




Discussion and conclusion

e We propose a novel strategy for full Bayesian Reinforcement
Learning (fBRL).

e The approach relies on a new likelihood-free algorithm.

e The algorithm allows for continuous updating of estimates and
supports environments with black-box models.

e |ts effectiveness was demonstrated empirically using a toy example.

e The method is flexible and can be extended beyond the RL setting.

e Future work will focus on several extensions:

e Handling batches of size greater than one.

e Developing adaptive strategies to address the
exploration—exploitation trade-off (WIP).

e Providing theoretical results and applying the method to real-world
scenarios (WIP).

22
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Kernel function

Kemel K
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Details about experiments

Final € = 0.02 (=~ 0.03 with different parametrization)
S = 10000 (ESS); S = 50000 (UP)

e M =150

o =0.98

Initial length of the history 10, N = 48



Further results
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Figure 4: Posterior distributions for 110 and 1 (left) and 7™ (right) along with
true values.
; AR-ABC with full data; utility-based LF-IBIS with ESS.



Further results

Value Function distribution across i
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