

Feature allocation models with imperfect detection for ecological applications

Federica Stolf

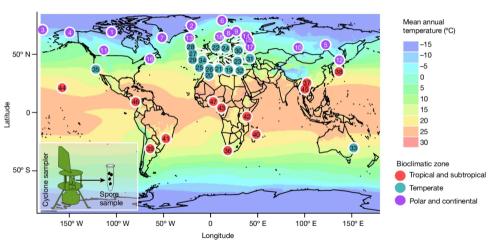
☑ federica.stolf@duke.edu

Joint work with Tommaso Rigon and David Dunson

SISBayes – September 4, 2025

Motivating data: Global Spore Sampling Project data

GSSP data from Abrego et al. (2024)



Motivating application: species co-occurrence data (incidence data)



Species co-occurrence data:

- $Y^{(q)}$ is a $n_q \times p$ binary matrix with $q = 1, \dots, Q$;
- $y_{ij}^{(q)} = 1$ if species j was found in sample i of group q and 0 otherwise.

Challenges

- The number of species is huge ($p \approx 1,000 200,000$).
- · Many rare species.
- Detectability issue: detectability of species occurrences is rarely perfect.
 Does the absence of a species mean that the species is not present or that we are unable to observe it?

Feature allocation models

- Indian Buffet Processes (IBPs) (Teh and Gorur, 2009; Griffiths and Ghahramani, 2011; Broderick et al., 2013) are popular Bayesian nonparametric models designed for binary latent feature matrices with a potentially infinite number of columns.
- IBPs sequentially sample the latent feature matrix, allowing the discovery of new binary features as more data becomes available.
- In biodiversity studies, features = observed species we can include an ever-growing number of species.

Limitations of current IBPs for biodiversity data:

- 1. Exchangeability assumption for samples
- 2. They do not account for imperfect detection

Beta bernoulli models

- We focus on a specific instance of the IBP with a finite but unknown number of species, the **beta Bernoulli (BB)** models (Ghilotti et al. 2024).
- N is the unknown total number of species.
- The BB model for multiple groups with parameters (N, α_q, θ_q) such that $N \in \mathbb{N}$, $\alpha_q < 0$ and $\theta_q > -\alpha_q$ assume

$$y_{ij}^{(q)} \mid \pi_{jq} \stackrel{\text{ind}}{\sim} \operatorname{Bernoulli}(\pi_{jq}), \qquad \pi_{jq} \stackrel{\text{ind}}{\sim} \operatorname{Beta}(-\alpha_q, \alpha_q + \theta_q),$$

for
$$j = 1, ..., N$$
, $i = 1, ..., n_q$ and $q = 1, ..., Q$.

• The observed number of species for each group K_{nq} , is such that $K_{nq} \leq N$.

BB models with imperfect detection (i)

The BB model with imperfect detection with parameters $(N, \alpha_q, \theta_q, \sigma_q)$ such that $N \in \mathbb{N}$, $\alpha_q < 0$, $\theta_q > -\alpha_q$ and $\sigma_q \in (0, 1)$ assume for j = 1, ..., N and q = 1, ..., Q

$$y_{ij}^{(q)} \mid \eta_{jq}, \gamma_{jq} \stackrel{\text{ind}}{\sim} \operatorname{Bernoulli}(\eta_{jq}\gamma_{jq}),$$
 $\eta_{jq} \sim \operatorname{Beta}\{-\alpha_q, \sigma_q(\alpha_q + \theta_q)\}, \qquad \leftarrow \operatorname{Occupancy}$
 $\gamma_{jq} \sim \operatorname{Beta}\{-\alpha_q + \sigma_q(\alpha_q + \theta_q), (1 - \sigma_q)(\alpha_q + \theta_q)\}. \qquad \leftarrow \operatorname{Detectability}$

Detectability parameter σ_q

- $\sigma_a \rightarrow 0$ means that no species can be detected.
- \cdot $\sigma_q
 ightarrow$ 1 implies perfect detectability, indeed

$$E(\eta_{jq}) = -\alpha_q/\theta_q, \qquad E(\gamma_{jq}) = 1.$$

BB models with imperfect detection (ii)

- In this framework N is the number of total species potentially detected \longrightarrow global species-richness.
- We assume $N \sim \text{Poisson}(\lambda)$.
- Each group has a different number of species observed, K_{n1}, \ldots, K_{nQ} (with $K_{nq} \sim \text{Poisson}$).

Theorem 1

Marginally the BB model with imperfect detection is equivalent to the BB model, i.e.

$$\pi_{jq} = \eta_{jq} \gamma_{jq}, \qquad \pi_{jq} \sim \text{Beta}(-\alpha_q, \alpha_q + \theta_q).$$

Prior selection and posterior computations

Prior choice for the BB model with imperfect detection with parameters $(N, \alpha_q, \theta_q, \sigma_q)$

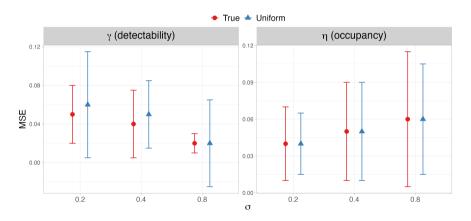
- We take hierarchical priors on α_q and θ_q to borrow information across sites.
- The detectability parameter σ_q is not identifiable. We set $\sigma_q \sim \mathrm{Unif}(a_\sigma, b_\sigma)$ with $a_\sigma \to 0$ and $b_\sigma \to 1$.

Posterior computation

- 1. Obtain the posteriors of (N, α_q, θ_q) from the marginal model.
- 2. Obtain the posteriors of the detectability and occupancy probabilities (η_{jq}, γ_{jq}) via a collapsed Gibbs sampler with data augmentation.

Simulations for detectability parameters

MSE for γ and η vectors with σ sampled from a uniform distribution or fixed to its true value.



How to measure biodiversity?

The most common measure for biodiversity is **alpha-diversity**: species diversity of a local community or habitat.

- Typically measured as species richness, i.e. the total number of species in a community.
- In the BB models the species richness is *N*, that is unknown and it can be estimated employing a prior distribution for *N*.

We will focus on **beta-diversity**: heterogeneity of species across different sampling regions.

- There are many ways to quantify it and little agreement about which is best.
- · Often estimated using dissimilarity indexes (e.g., Jaccard, Sørensen, Bray–Curtis).

Beta diversity

- We propose a definition of β -diversity under a coherent probabilistic framework.
- We define the β -diversity between groups p and q as

$$\beta_{pq} = 1 - \frac{\sum_{j=1}^{N} \eta_{jq} \eta_{jp} - \sum_{j=1}^{N} \eta_{jq} \sum_{j=1}^{N} \eta_{jp}}{\left\{ \left[\sum_{j=1}^{N} \eta_{jq}^{2} - (\sum_{j=1}^{N} \eta_{jq})^{2} \right] \left[\sum_{j=1}^{N} \eta_{jp}^{2} - (\sum_{j=1}^{N} \eta_{jp})^{2} \right] \right\}^{1/2}}.$$

- It is a function of the posteriors of η , so we can do uncertainty quantification.
- It is bounded between 0 and 1 and it is a correlation among random vectors.

Theoretical results related to beta diversity

Consider the BB model with imperfect detection and assume $N \sim \text{Poisson}(\lambda)$. The total number of shared species among two groups p and q ($p \neq q$) is

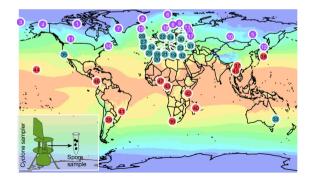
$$C_{pq} \sim Poisson(\lambda \zeta_{pq}),$$

$$\zeta_{pq} = 1 - \frac{(\sigma_q \{\alpha_q + \theta_q\})_{n_q}}{(\sigma_q \{\alpha_q + \theta_q\} - \alpha_q)_{n_q}} - \frac{(\sigma_p \{\alpha_p + \theta_p\})_{n_p}}{(\sigma_p \{\alpha_p + \theta_p\} - \alpha_p)_{n_p}} + \frac{(\sigma_q \{\alpha_q + \theta_q\})_{n_q} (\sigma_p \{\alpha_p + \theta_p\})_{n_p}}{(\sigma_q \{\alpha_q + \theta_q\} - \alpha_q)_{n_q} (\sigma_p \{\alpha_p + \theta_p\} - \alpha_p)_{n_p}}.$$

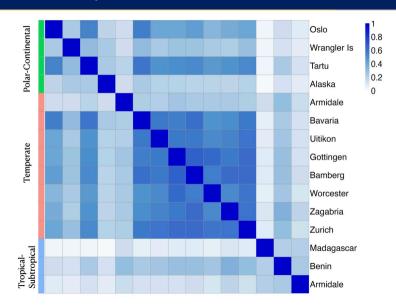
We can obtain the analogous result for the BB marginal model.

Preliminary results for GSSP data

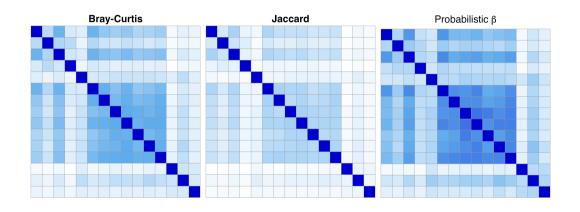
- We analyze the fungi data from Abrego et al. (2024).
- We select the sites that have at least 50 samples, for a total of Q=15 groups. The groups considered cover all three climatic zones (polar-continental, temperate and tropical-subtropical) and all the continents.
- The number of species identified is p = 17170.



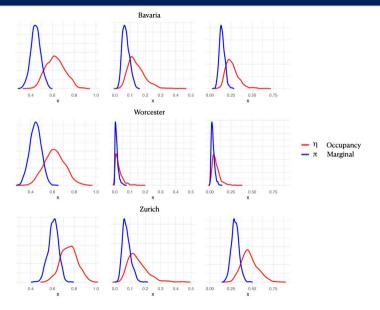
GSSP data - beta similarity



Beta similarity - comparison



Posterior marginal and occupancy probabilities



Conclusion and future directions

- We introduce a feature allocation model that accounts for imperfect detection in species co-occurrence data and accommodates partially exchangeable data.
- The proposed framework offers an ecologically meaningful interpretation, separating occupancy and detectability components.
- We provide both theoretical insights for assessing biodiversity and applied results to demonstrate the method's utility.
- Future directions include studying the beta diversity index through correlation structures among random measures, related to the framework of Franzolini et al. (2025) for species sampling models.

References

Abrego, N., B. Furneaux, B. Hardwick, P. Somervuo, I. Palorinne, C. A. Aguilar-Trigueros, N. R. Andrew, U. V. Babiy, T. Bao, G. Bazzano, et al. (2024). Airborne dna reveals predictable spatial and seasonal dynamics of fungi. *Nature* 631 (8022), 835–842.

Broderick, T., J. Pitman, and M. Jordan (2013). Feature allocations, probability functions, and paintboxes. *Bayesian Analysis* 8 (4), 801–836.

Franzolini, B., Lijoi, A., Prünster, I., and Rebaudo, G. (2025). Multivariate species sampling models. arXiv:2503.24004

Ghilotti, L., F. Camerlenghi, and T. Rigon (2024). Bayesian analysis of product feature allocation models. arXiv:2408.15806

Griffiths, T. and Z. Ghahramani (2011). The Indian Buffet Process: An Introduction and Review. *Journal of Machine Learning Research* 12 (32), 1185–1224.

Teh, Y. and D. Gorur (2009). Indian buffet processes with power-law behavior. In Advances in Neural Information Processing Systems, Vol 22

Thank you for your attention!