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Motivating data: Global Spore Sampling Project data

GSSP data from Abrego et al. (2024)
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Motivating application: species co-occurrence data (incidence data)

Species co-occurrence data:
• Y(q) is a nq × p binary matrix with
q = 1, . . . ,Q;

• y(q)ij = 1 if species j was found in sample
i of group q and 0 otherwise.

Challenges

• The number of species is huge (p ≈ 1, 000− 200, 000).
• Many rare species.
• Detectability issue: detectability of species occurrences is rarely perfect.
Does the absence of a species mean that the species is not present or that we are
unable to observe it?
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Feature allocation models

• Indian Buffet Processes (IBPs) (Teh and Gorur, 2009; Griffiths and Ghahramani, 2011;
Broderick et al., 2013) are popular Bayesian nonparametric models designed for
binary latent feature matrices with a potentially infinite number of columns.

• IBPs sequentially sample the latent feature matrix, allowing the discovery of new
binary features as more data becomes available.

• In biodiversity studies, features = observed species −→ we can include an
ever-growing number of species.

Limitations of current IBPs for biodiversity data:

1. Exchangeability assumption for samples
2. They do not account for imperfect detection
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Beta bernoulli models

• We focus on a specific instance of the IBP with a finite but unknown number of
species, the beta Bernoulli (BB) models (Ghilotti et al. 2024).

• N is the unknown total number of species.
• The BB model for multiple groups with parameters (N, αq, θq) such that N ∈ N,
αq < 0 and θq > −αq assume

y(q)ij | πjq
ind∼ Bernoulli(πjq), πjq

ind∼ Beta(−αq, αq + θq),

for j = 1, . . . ,N, i = 1, . . . ,nq and q = 1, . . . ,Q.
• The observed number of species for each group Knq, is such that Knq ≤ N.
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BB models with imperfect detection (i)

The BB model with imperfect detection with parameters (N, αq, θq, σq) such that N ∈ N,
αq < 0, θq > −αq and σq ∈ (0, 1) assume for j = 1, . . . ,N and q = 1, . . . ,Q

y(q)ij | ηjq, γjq
ind∼ Bernoulli(ηjqγjq),

ηjq ∼ Beta{−αq, σq(αq + θq)}, ← Occupancy
γjq ∼ Beta{−αq + σq(αq + θq), (1− σq)(αq + θq)}. ← Detectability

Detectability parameter σq

• σq → 0 means that no species can be detected.
• σq → 1 implies perfect detectability, indeed

E(ηjq) = −αq/θq, E(γjq) = 1.
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BB models with imperfect detection (ii)

• In this framework N is the number of total species potentially detected −→ global
species-richness.

• We assume N ∼ Poisson(λ).
• Each group has a different number of species observed, Kn1, . . . , KnQ (with
Knq ∼ Poisson).

Theorem 1
Marginally the BB model with imperfect detection is equivalent to the BB model, i.e.

πjq = ηjqγjq, πjq ∼ Beta(−αq, αq + θq).
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Prior selection and posterior computations

Prior choice for the BB model with imperfect detection with parameters (N, αq, θq, σq)

• We take hierarchical priors on αq and θq to borrow information across sites.
• The detectability parameter σq is not identifiable. We set σq ∼ Unif(aσ,bσ) with
aσ → 0 and bσ → 1.

Posterior computation

1. Obtain the posteriors of (N, αq, θq) from the marginal model.
2. Obtain the posteriors of the detectability and occupancy probabilities (ηjq, γjq) via a
collapsed Gibbs sampler with data augmentation.
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Simulations for detectability parameters

MSE for γ and η vectors with σ sampled from a uniform distribution or fixed to its true
value.
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How to measure biodiversity?

The most common measure for biodiversity is alpha-diversity: species diversity of a local
community or habitat.

• Typically measured as species richness, i.e. the total number of species in a
community.

• In the BB models the species richness is N, that is unknown and it can be estimated
employing a prior distribution for N.

We will focus on beta-diversity: heterogeneity of species across different sampling
regions.

• There are many ways to quantify it and little agreement about which is best.
• Often estimated using dissimilarity indexes (e.g., Jaccard, Sørensen, Bray–Curtis).
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Beta diversity

• We propose a definition of β-diversity under a coherent probabilistic framework.
• We define the β-diversity between groups p and q as

βpq = 1−
∑N

j=1 ηjqηjp −
∑N

j=1 ηjq
∑N

j=1 ηjp{[∑N
j=1 η

2
jq − (

∑N
j=1 ηjq)

2
][∑N

j=1 η
2
jp − (

∑N
j=1 ηjp)

2
]}1/2 .

• It is a function of the posteriors of η, so we can do uncertainty quantification.
• It is bounded between 0 and 1 and it is a correlation among random vectors.
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Theoretical results related to beta diversity

Consider the BB model with imperfect detection and assume N ∼ Poisson(λ). The total
number of shared species among two groups p and q (p ̸= q) is

Cpq ∼ Poisson(λζpq),

ζpq = 1−
(σq{αq + θq})nq

(σq{αq + θq} − αq)nq
−

(σp{αp + θp})np
(σp{αp + θp} − αp)np

+
(σq{αq + θq})nq(σp{αp + θp})np

(σq{αq + θq} − αq)nq(σp{αp + θp} − αp)np
.

We can obtain the analogous result for the BB marginal model.
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Preliminary results for GSSP data

• We analyze the fungi data from Abrego et al. (2024).
• We select the sites that have at least 50 samples, for a total of Q = 15 groups. The
groups considered cover all three climatic zones (polar-continental, temperate and
tropical-subtropical) and all the continents.

• The number of species identified is p = 17170.
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GSSP data - beta similarity
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Beta similarity - comparison

14



Posterior marginal and occupancy probabilities
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Conclusion and future directions

• We introduce a feature allocation model that accounts for imperfect detection in
species co-occurrence data and accommodates partially exchangeable data.

• The proposed framework offers an ecologically meaningful interpretation, separating
occupancy and detectability components.

• We provide both theoretical insights for assessing biodiversity and applied results to
demonstrate the method’s utility.

• Future directions include studying the beta diversity index through correlation
structures among random measures, related to the framework of Franzolini et al.
(2025) for species sampling models.
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Thank you for your attention!
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