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Inferential vs predictive approach in Stats

We are all familiar, at least since Leo Breiman’s (2001, Statistical
Science), with the “two cultures” - classic statistical inference versus
algorithmic prediction.
And the more so, with Stats and AI...

The Bayesian approach has prediction in its foundations, and can
naturally combine both cultures.



Classic: from inference to prediction

In classic statistics, prediction is guided by the study of the phenomenon
of interest and the resulting inferential model.

In the Bayesian approach,

(X1, . . . ,Xn) | θ ∼ p(x1, . . . , xn | θ), n ≥ 1

where θ is described as random with prior distribution π,
from which we obtain the predictive distribution

Xn+1 | x1:n ∼ pn(xn+1 | x1:n) =

∫
p(xn+1 | x1:n, θ)dπ(θ | x1:n),

with full Bayesian uncertainty quantification.

However, specifying the proper model or eliciting the prior may be
difficult (e.g., parameters lose interpretation in black-box models).
Moreover, computations may be overwhelming, especially with
streaming data.
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from prediction to inference

On the other hand, we have a wealth of predictive algorithms [a strategy
to provide predictions, with no explicit likelihood or priors] that perform
well.. but often lack clean understanding and uncertainty quantification.

This talk is a review, but a guideline-aim is to show how, by taking a
Bayesian predictive approach, we may
- read recursive predictive algorithms as Bayesian predictive learning rules,
- understand the statistical model & prior implicitly used, if any,
- and provide full Bayesian uncertainty quantification.

Examples and potential applications are many, in statistics (e.g.,
quasi-Bayes approximations of costly Bayesian procedures), and in
machine-learning and AI contexts (e.g., understanding if In-Context
Learning of LLMs is any Bayesian, or how trained transformers learn)1

1Susan Wei’s talk at post-Bayes workshop, UCL, May 2025
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1. Bayesian predictive approach
* In the decision-theoretical foundations of Bayesian statistics, we have
agents acting under incomplete information
(not dealing with replicates of experiments)

* Probability is the prescribed way to formalize incomplete information
(uncertainty)

* and should be expressed on observable facts.

Thus the modeling effort is to elicit p(x1, . . . , xn) (for any n).

Models may convey valuable information, but are just a ring of the chain

(X1, . . . ,Xn)→ models, parameters → Xn+1

thus, properties of models andinference should be thought of in their effects

on prediction

→ We can directly reason on what is relevant for prediction and assign

p(x1, . . . ,nn) = p0(x1)p1(x2 | x1) · · ·pn−1(xn | x1:n−1).



What is a Bayesian predictive rule?

Because (incomplete) information is expressed through probability,
learning is expressed through conditional probability.

* The predictive distribution Pn(·) = P(Xn+1 ∈ · | X1, . . . ,Xn) formalizes
how we learn from the data (X1, . . . ,Xn) on the future observation Xn+1.
(not meant as the true mechanism that generates xn+1 given x1:n)

Any predictive rule in this sense is Bayesian.

* The predictive distributions give the finite-dimensional

p(x1, . . . , xn) = p0(x1)p1(x2 | x1) · · · pn−1(xn | x1:n−1).

The predictive rule (Pn)n≥0 characterizes the law P of the process,
(Xn)n≥1 ∼ P (Ionescu-Tulcea theorem).



Basic desiderata for prediction

There are no formal constraints in assigning the predictive rule... but
natural desiderata!

→ Basic setting: random sampling

• exchangeability Not mandatory, but natural to judge that labels do
not carry information (‘order does not matter’)

p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n)).

Extending to the infinite sequence (Xn)n≥1 ∼ P, natural to ask
invariance under every finite permutation, i.e. (Xn)n≥1
exchangeable.

• Check prediction with facts! Minimal requirement: for n large, Pn

should agree with empirical frequences: P(d(Pn, F̂n)→ 0) = 1.

• Link with inference? Does Pn implicitly use a model and a prior?
This would give the latter a predictive justification, and allow
inference.
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Exchangeability

• exchangeability. The predictive rule (Pn)n≥0 characterizes an
exchangeable law P for (Xn)n≥1 iff
∗p(xn+1 | x1:n) invariant to permutations of x1, . . . , xn;
∗p(xn+1, . . . , xn+k | x1:n) invariant to permutations of xn+1, . . . , xn+k

• Check with facts. Under exchangeability, the empirical F̂n and the
predictive distributions Pn converge, to the same limit F̃ , a random
distribution

lim F̂n = lim Pn = F̃ .

• Link to inference: de Finetti representation theorem.
(informal). If (Xn)n≥1 ∼ P is exchangeable, then P can be
represented as

Xi | F̃
iid∼ F̃ ,

where F̃ = lim F̂n = lim Pn.
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predictive characterizations

Thus, in a predictive approach, we can directly move from the predictive
rule (Pn)nn ≥ 0; if exchangeable, it characterize the ‘model’ as
F̃ = lim Pn and the prior as its distribution.

Example. Pólya sequences2 (Xn)n≥1 such that X1 ∼ P0 and for n ≥ 1

Xn+1 | x1:n ∼ Pn(·) =
α

α + n
P0(·) +

n

α + n

n∑
i=1

δxi (·)/n.

Thrm The sequence (Xn) is exchangeable.

Pn → F̃ and Xi | F̃
iid∼ F̃ , where F̃ ∼ DP(α,P0).

Predictive characterizations have a long tradition in Bayesian statistics,
and encourage a tractable predictive rule. Yet, often not easy to have
exchangeability AND a tractable predictive rule!
E..g., beyond trivial cases, smoothing the point masses δxi (·) with kernels
K (·; xi ) when dealing with continuous data breaks exchangeability.

2Blackwell & Mac Queen, Ann. Statist., 1973
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2. Asymptotic exchangeability

Our idea is to accept an approximation in terms of asymptotic
exchangeability.

Exchangeability implies that Pn → F̃ . The reverse is not true, but:
Thrm(Aldous, 1983) If Pn converges to a random probability distribution
F̃ , then (Xn)n≥1 is asymptotically exchangeable; informally, for n > N
large,

Xn | F̃
iid
≈ F̃ with F̃ ∼ π.

an approx exchangeable setting where, again, the model is F̃ = lim Pn

and its probability law is the “implicit” prior.
Moreover, (Rigo; see Bissiri & Walker, EJS, 2025) also F̃ = lim F̂n.
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How can we assign a convergent predictive rule?

How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?
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Martingale predictive, or c.i.d. sequences

* A sufficient condition for Pn → F̃ is that (Pn)n≥0 is a measure-valued

martingale; equivalently, Xn+k | X1:n
d
= Xn+1 | X1:n k ≥ 1, i.e. (Xn)n≥1

is c.i.d.(Berti et al, Ann. Prob.2004)

* Thrm.(Kallenberg, 1998) (Xn) exchangeable if and only if it is
stationary and (Pn) is a martingale.
(we break stationarity: time - the order - matters, in the initial stage)



Turning algorithms into Bayesian
predictive rules

There are many predictive algorithms, that we can read as Bayesian
predictive learning rules!

A ‘statistical’ example. Consider the popular DP mixture model

Xt | G
iid∼ fG (x) =

∫
k(x | θ)dG (θ), G ∼∼ DP(α,G0).

Suppose data arrive sequentially, and interest is in estimating the mixing
distribution G , updating the estimate as a new xt becomes available.
Computations; MCMC no! sequential MC, or sequential VB...?

→ “A recursive algorithm”: start from G0(θ) at t = 0 and for t ≥ 1
recursively update

Gt(θ) = (1− αn)Gt−1(θ) + αnGt−1(θ | xt).

At step t = n, Gn(θ) is the proposed estimate of G (θ). (“Newton’s
algorithm” in the BNP literature).
But, uncertainty around Gn? In fact, is this algorithm any Bayesian?
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A Bayesian predictive rule
By taking a predictive approach, we (Fortini & P. (2020), JRSS,B) can read
it as a Bayesian predictive learning rule,

X n + 1 | x1:n ∼ Pn = FGn(x) =

∫
K (x | θ)dGn(θ)

= (1− αn)Pn−1 + αn

∫
K (· | θ)dGn−1(θ | xn).

Then we show that (Pn)n≥0 is a martingale, and Pn converges to

F̃ = FG̃ =
∫

K (· | θdG̃ (θ), where G̃ = lim Gn.

Thus, the algorithm is using an asymptotically exchangeable
Bayesian mixture model; for n > N large

Xi | G
iid
≈ fG (x) =

∫
k(x | θ)dG (θ)

with an implicit prior on G̃ .

→ The prior, and the posterior distribution of G̃ are not explicit, but
we will approximate them!
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Example: online gradient descent
→ Classify items that arrive sequentially: (Xn,Yn), where Xn are features
and Yn is type, 0− 1. One models

P(Yn = 1 | xn) = g(xn, β)

for a known, but possibly complex, g , e.g. neural network, and an
unknown vector β.

Given a training sample (x1, y1), . . . , (xn, yn), it is common to estimate β
by minimizing a loss function L(β; x1:n, y1:n) measuring the discrepancy
between the actual values y1, . . . , yn and the ones predicted by the model.

A popular recursive algorithm is the online gradient descent that is
initialized at β0 and for n = 1, 2, . . .

βn = βn−1 −
1

n
∇βL(βn−1; xn, yn).

E.g., with the binary cross entropy loss, and logistic function g(x , β),

βn = βn−1 +
1

n log 2
(yn − g(xn, βn−1))xn.



A Bayesian predictive rule!

We can read it as a Bayesian predictive learning rule for the sequence

((Xn,Yn))n≥1, by taking Xi
iid∼ px and letting

(Xn+1,Yn+1) | x1:n, y1:n ∼ Pn(x , y)

where Pn is such that

P(Yn+1 = 1 | x1:n, y1:n, xn+1) = g(xn+1, βn).

Then under general conditions βn → β̃, random, and Pn(x , y) converges
to a random F̃ (x , y), such that, for n large

Yn | xn, β̃
ind
≈ Bernoulli(g(xn+1, β̃)),

with an implicit prior on β̃. Moreover

βn = E (β̃ | x1:n, y1:n).



inference on β̃

We can then make Bayesian inference on β̃ (“without the prior”) with an
implicit prior on β̃.
BUT, how can we obtain the implied posterior distribution?

Not by predictive resampling, as we’s need to sample pairs
(xn+1, yn+1), . . ., thus need the distribution of the Xi !

→ Provide asymptotic approximation of the implicit posterior of β̃

We prove that, under regularity conditions,

β̃ | x1:n, y1:n ≈ Nd(βn,
Vn

n
)

where

Vn =
1

n

n∑
k=1

k2(βk − βk−1)(βk − βk−1)T

does not depend on PX ; and asymptotic credible intervals for β̃.



How can we assign a convergent predictive rule?
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Link with parametric models
In the examples, the model F̃ = lim Pn implied by the algorithm (the
predictive rule) is semi-parametric (in the mixture example,
F̃ = FG̃ =

∫
K (· | θdG̃ (θ), the parameter is G̃ ), or parametric, F̃ = Fβ̃ .

In the general case, Pn → F̃ , and the asymptotic model is F̃ .
Parametric if Pn → Fθ̃.

In parametric models Fθ(x), under exchangeability, θ̃ typically is the limit
of a predictive sufficient statistic, which inspires the specification

Pn(xn+1 | X1; . . . ,Xn) = F (xn+1 | Tn(X1, . . . ,Xn)) ≡ FTn(xn+1),

where Tn is computed recursively as a function of Tn−1 and xn; in
particular,

Tn = Tn−1 + αnh(Tn−1,Xn).

Under conditions, Tn → θ̃ and Pn = FTn → Fθ̃. Thus, asymptotically,

Xn | θ̃
d
≈ Fθ̃ where θ̃ = lim Tn has an implicit prior law.

* This is related to the plug-in predictive (Walker, 2022; see Fong &
Yiu, 2024+) where Tn = θ̂n, e.g. MLE.
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Parametric if Pn → Fθ̃.

In parametric models Fθ(x), under exchangeability, θ̃ typically is the limit
of a predictive sufficient statistic, which inspires the specification

Pn(xn+1 | X1; . . . ,Xn) = F (xn+1 | Tn(X1, . . . ,Xn)) ≡ FTn(xn+1),

where Tn is computed recursively as a function of Tn−1 and xn; in
particular,

Tn = Tn−1 + αnh(Tn−1,Xn).

Under conditions, Tn → θ̃ and Pn = FTn → Fθ̃. Thus, asymptotically,

Xn | θ̃
d
≈ Fθ̃ where θ̃ = lim Tn has an implicit prior law.

* This is related to the plug-in predictive (Walker, 2022; see Fong &
Yiu, 2024+) where Tn = θ̂n, e.g. MLE.



How can we assign a convergent predictive rule?

How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?



posterior approximation

The prior remains implicit. How can we approximate the posterior
distribution?

• Sample from it! predictive Monte Carlo, or predictive resampling,
(Fortini & P., JRSS, 2020; Fong, Holmes & Walker, JRSS, B, 2023).

• Gaussian asymptotic approximations of the posterior distribution of
θ, in parametric cases; or of the posterior distribution of F (t), for a
fixed t or on a grid, or of the entire process F̃ , in the general case.

The latter are not BvM results; rather refine Doob’s theorem
(“Doob-BvM”).



Predictive Monte Carlo

Suppose Pn → F̃ , and interest is in inference on F (t), or in a
functional θ̃ = θ(F̃ ), e.g.

∫
xdF̃ (x).

We can design a predictive Monte Carlo, or predictive resampling
algorithm to sample from their prior and posterior distributions.3

Sampling from the posterior

- Given data x1:n, use the predictive rule to generate (xn+1, xn+2, . . .)
truncated at a large N: get x1:N .

- Compute the empirical F̂N(t) =
∑N

i=1 δxi (t), or the pred PN(t | x1:N).

Because Pn → F̃ , and N is large, PN(t) approximates F̃ (t),
a sample from the posterior of F̃ (t).

- Repeat M times: (approx) Monte Carlo sample of size M from the
posterior.

• If interest in θ̃ = θ(F̃ ): compute the empirical θ(F̂N) at each iteration, to
get an approx Monte Carlo sample from the posterior dist. of θ̃.

If n = 0 : sampling from the prior.

3Fortini & P., JRSS, B, (2020); Fong, Holmes, Walker, JRSS, B, (2023)
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Asymptotic Gaussian approximations

Predictive Monte Carlo does not require MCMC!
But also interesting to have analytic approximations – in some cases,
better! e.g., in the logistic regression ex: we should sample pairs (Xn,Yn)
but do not have PX .

Let’s consider the general case, Pn → F̃ thus for n large

Xn | F̃
iid
≈ F̃ .

Here I only consider the case where (Pn)n≥0 is a martingale.

Interest in the posterior distribution of F̃ (t) at a fixed t.

Remember that F̃ = lim Pn. Given data x1:n, we are uncertain about the
limit F̃ of Pn. uncertainty formalized in the posterior distribution of F̃ is
such an uncertainty, ‘due to the missing obs”, and depends on the
behavior of Pn.
Intuitively, if Pn → F̃ at a fast rate, then for finite n we will be fairly sure
about its limit, reflected in a small posterior variance.
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From the predictive to the posterior distr.

Consider the predictive updates

∆t,n = Pn(t)− Pn−1(t),

how the predictive distribution at t varies in response to the new
observation xn. Let

Vt,n =
1

n

n∑
k=1

k2∆t,k
2.

Thrm4 Under regularity conditions,

F̃ (t) | x1:n ≈ N (Pn(t),
Vn,t(x1:n)

n
)

for P-almost all ω = (x1, x2, . . .).
The approximation is centered on Pn(t) = E (F̃ (t) | x1:n).
The asymptotic variance depends on the way the predictive distribution
learns from the data.

4Fortini & P., Phil. Trans. Roy. Soc., 2023; Fortini & P., Statistical Science, 2025



Predictive efficiency?

We can obtain asymptotic credible intervals for F̃ (t) given x1:n[
Pn(t)− z1−α/2

√
Vt,n

n
,Pn(t) + z1−α/2

√
Vt,n

n

]
The size of the credible interval depends on the convergence rate of Pn.

Yet, is Pn “learning well? is it “efficient”?

It has to balance a convergence rate with a proper learning rate
(Ex, if Pn = P0 for any n, it converges immediately, but does not learn
from the data!)
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example
Example: F̃ ∼ DP(αP0); then

Pn(t) =
α

α + n
P0(t)+

1

α + n

n∑
i=1

δxi (t)

= Pn−1(t)+
1

α + n
(δxn(t)−Pn−1(t)),

and

∆t,n(t) =
1

α + n
[δxn(t)− Pn−1(t)]

depends on α: if α large, ∆t,n is small: given x1:n−1, we do not learn
much from the new observation xn in predicting xn+1
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Marginal 0.95 credible intervals for F̃ (t) for t on a grid: α = 1 (left
panel) and α = 100 (right). Solid curve: True F .



example
Example: F̃ ∼ DP(αP0); then

Pn(t) =
α

α + n
P0(t)+

1

α + n

n∑
i=1

δxi (t) = Pn−1(t)+
1

α + n
(δxn(t)−Pn−1(t)),

and

∆t,n(t) =
1

α + n
[δxn(t)− Pn−1(t)]

depends on α: if α large, ∆t,n is small: given x1:n−1, we do not learn
much from the new observation xn in predicting xn+1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

t

P
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

t

P
(t

)

Marginal 0.95 credible intervals for F̃ (t) for t on a grid: α = 1 (left
panel) and α = 100 (right). Solid curve: True F .



example
Example: F̃ ∼ DP(αP0); then

Pn(t) =
α

α + n
P0(t)+

1

α + n

n∑
i=1

δxi (t) = Pn−1(t)+
1

α + n
(δxn(t)−Pn−1(t)),

and

∆t,n(t) =
1

α + n
[δxn(t)− Pn−1(t)]

depends on α: if α large, ∆t,n is small: given x1:n−1, we do not learn
much from the new observation xn in predicting xn+1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

t

P
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

t

P
(t

)

Marginal 0.95 credible intervals for F̃ (t) for t on a grid: α = 1 (left
panel) and α = 100 (right). Solid curve: True F .



Predictive inferential-efficiency?

This calls for a notion of predictive efficiency..

In frequentist stats: inferential efficiency: (asymptotic) variance of
unbiased efficient estimators in terms of Fisher information..

Is there a notion of efficiency in Bayesian Stats?
- rather, loss function and optimality..
- scoring rules, calibration..

- Here: IF the Xi are indeed iid from Ftrue , is the predictive rule able to
learn that, “efficiently”? giving good frequentist coverage of the implied
credible intervals?

The latter is usually studied through BvM results. Ours are not BvM
results: they hold with prob one, moreover the asymptotic variance is
expressed in terms of the predictive updates, not of Fisher information.

Yet, in a predictive approach, they may suggest conditions on the
predictive rule – on its learning rate – that ensure inferential efficiency
and good frequentist coverage.
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Some preliminary results

Consider the ‘parametric predictive’ rule

Pn(xn+1 | X1; . . . ,Xn) = F (xn+1 | Tn(1, . . . ,Xn)) ≡ FTn(xn+1,

with
Tn = Tn−1 + αn h(Tn−1,Xn)

Under conditions, Tn → θ̃ and Pn = FTn → Fθ̃, thus, asymptotically,

Xn | θ̃
iid
≈ Fθ̃ where θ̃ = lim Tn, and has an implicit prior.

Conditions on the updating:
* αn positive decreasing with

∑∞
n=1 αn =∞ and

∑
k≥n α

2
k <∞, and

* h satisfies E (h(θ,X )) = 0 and E (hj(θ,X )2) <∞ where X ∼ Fθ.

Then (Tn)n≥0 is a uniformly integrable martingale converging to θ̃.
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posterior distribution of θ̃

By the a.s. conditional CLT for martingales5, we can show that, for
P-almost all (x1, x2, . . .),√

bn(θ̃ − Tn) | x1:n → N (0,Uθ̃(x1:∞))

where bn = (
∑

k≥n α
2
k)−1 and

Uθ̃ = lim E (h(Tn,Xn)h(Tn,Xn)T | X1, . . . ,Xn−1)

= Var(h(θ̃,X ) | θ̃)

Thus, for n large,

θ̃ | x1:n ≈ N (Tn,
Uθ̃
bn

),

5Crimaldi, 2009



Thus, for n large,

θ̃ | x1:n ≈ N (Tn,
Uθ̃
bn

).

* The rate, b−1n =
∑

k≥n α
2
k , is generally slower than 1/n, unless

αn ∼ 1/n.

* The asymptotic posterior variance
Uθ = lim E (h(Tn,Xn)h(Tn,Xn)T | X1, . . . ,Xn−1), that again depends on
the predictive updates, correspond to the inverse of Fisher information
In(θ) for the model pθ if the ’loss’ h is suitably chosen.

→ An idea for such a “predictive inferential-efficiency” is to use
score-adjusted predictive rules with

Tn = Tn−1 + αn I(Tn−1)−1 s(Tn−1, xn)

where s(θ,X ) = ∂ logpθ(x)/∂θ is the score function, (elaborating from

Walker (2022), Holmes & Walker (2023), Wang & Holmes (2024); Fong & Yiu

(2024+).

E.g., this suggests to improve the online gradient descent updating
in the logistic example by including I(Tn−1)−1.
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Frequentist coverage?

Again, the asymptotic approximations still hold if the random variance
Uθ̃ is replaced by ‘an estimate’ (e.g. UTn) that converges to Uθ̃, allowing

to obtain predictive-based asymptotic credible intervals for θ̃ –
-+ that would have good frequentist coverage (very informally: “for
almost all θ”)

...BUT not BvM yet; rather “Doob-BvM”, with conditions on the
predictive updates
(some recent results by Fong & Yiu, 2024+, and by Fortini & P. -
ongoing )



Multivariate extensions

For short, the previous results were shown for the univariate case. For
martingale predictive rules Pn → F̃ , so that

Xi | F̃
iid
≈ F̃ for n large.

we can approximate the posterior distribution of F̃ (t) for a fixed t

→ The results extend to the posterior distribution of F̃ (t) for t on a grid,
and to the entire distribution F̃ .
The latter may allow to approximate the posterior distribution of
functionals of F̃ (e.g., µ =

∫
xdF̃ (x), quantiles F̃−1(p), ...)



predictive inference on [F̃ (t1), . . . , F̃ (tk)]

Consider a grid t1:k with P(X1 ∈ {t1, . . . , tk}) = 0, and the column vector
of predictive updates ∆n = [∆t1,n, . . . ,∆tk ,n]T .

Proposition
If there is a sequence (α)n with αn > 0,

∑∞
n=1 αn =∞ and∑

k≥n α
2
k <∞ such that

• E(supn α
−1/2
n | ∆tj ,n|) <∞

•
∑∞

n=1 α
−2
n E(∆4

tj ,n) <∞, j = 1, . . . , k

• E (α−2n ∆t,n∆T
t,n | X1, . . . ,Xn−1)→ Ũt1:k , P-a.s.,

for a positive definite random matrix Ũt1:k ,

then, P-a.s.

√
bn

F̃ (t1)− Pn(t1)
...

F̃ (tk)− Pn(tk)

 |X1, . . . ,Xn
d→ Nk(0, Ũt1:k )

where bn = (
∑

k≥n α
2
k)−1.



inference on F̃

Theorem
Suppose the same conditions hold for any (t1, . . . , tk).
If there exists n0 and a non-decreasing random element H̃ of D (space of
cadlag functions, with Skorohod topology) such that for every n ≥ n0,

E (α−2n (∆t,n −∆s,n)2 | X1, . . . ,Xn) ≤ H̃(t)− H̃(s) P-a.s.

for every s < t, then, P-a.s.,√
bn (Pn − F̃ ) | X1, . . . ,Xn

d→ G(U),

where bn = (
∑

k≥n α
2
k)−1, and G(U) is a centered Gaussian process

with kernel U satisfying U(ti , tj) = U(ti ,tj )[i , j ]. and U(t, t) = Ut .



Time dependence
Breaking exchangeability, order matters. In the DP mixture example,
Newton’s algorithm – as a predictive rule – is implicitly assuming a
time-dependent mixture model

Xi | G̃n
iid∼

∫
K (· | θ)dG̃n(θ)

with a specific temporal evolution of the random (Gn); in particular,

E(Gn(·) = G0(·) and G̃n converges to a random G̃ ; (details in Fortini & P.

JRSS, B 2020).

This may be an interesting model when one actually has time. In a static
setting, it is an asymptotic approximation of an exchangeable mixture
model with G̃ constant – intuitively, the closer to it the ‘more stable’ the
G̃n are.

* Again, the learning coefficients αn have a crucial dual role in
– driving the rate of convergence of G̃n to the limit G̃ (we’d like it to be
fast, to quickly reach exchangeability)
– driving the learning rate (we’d like to be fairly slow, to actually learn
from the observations as they become available).
* The role of the loss function is unexplored in this semi-parametric
setting.



Beyond random sampling

I have here considered the basic setting, random sampling –
exchangeability.

Extensions to more elaborated sampling schemes and settings - e.g.,
fixed-design regression and partial exchangeability, and time series ...- are
only partially developed.

A direction for extensions to partially exchangeable structures and
possibly Markov chains is to move from the notion of partially c.i.d.
arrays (Fortini, P. & Sporysheva, Bernoulli, 2016).



Final remarks & open problems

• We can take a Bayesian predictive approach to deal with (some
classes of) recursive predictive algorithms

• Is the predictive rule implicitly using an inferential scheme?
Then we can provide Bayesian uncertainty quantification (without
the (explicit) prior!)

• Inferential properties depends on the capacity of the predictive
distribution of learning from the data.
→ “predictive efficiency”?
→ Frequentist properties?
→ More genuinely predictive criteria? Calibration and scoring rules?

• more on extensions beyond random sampling (asymptotic partial
exchangeability, ...)

•
...

Thank you for attending this lecture!
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