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Inferential vs predictive approach in Stats

We are all familiar, at least since Leo Breiman's (2001, Statistical
Science), with the “two cultures” - classic statistical inference versus
algorithmic prediction.

And the more so, with Stats and Al...

The Bayesian approach has prediction in its foundations, and can
naturally combine both cultures.



Classic: from inference to prediction

In classic statistics, prediction is guided by the study of the phenomenon
of interest and the resulting inferential model.

In the Bayesian approach,
(X1, X0) |0~ p(x1,....x, | 0), n>1

where 0 is described as random with prior distribution ,
from which we obtain the predictive distribution

Xos1 | Xtm ~ Pa(Xns1 | X1m) = / p(xns1 | X1ms 0)d7(6 | X1m).

with full Bayesian uncertainty quantification.
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In classic statistics, prediction is guided by the study of the phenomenon
of interest and the resulting inferential model.

In the Bayesian approach,
(X1, X0) |0~ p(x1,....x, | 0), n>1

where 0 is described as random with prior distribution ,
from which we obtain the predictive distribution

Xos1 | Xtm ~ Pa(Xns1 | X1m) = / p(xns1 | X1ms 0)d7(6 | X1m).

with full Bayesian uncertainty quantification.

However, specifying the proper model or eliciting the prior may be
difficult (e.g., parameters lose interpretation in black-box models).
Moreover, computations may be overwhelming, especially with
streaming data.



from prediction to inference

On the other hand, we have a wealth of predictive algorithms [a strategy
to provide predictions, with no explicit likelihood or priors] that perform
well.. but often lack clean understanding and uncertainty quantification.

This talk is a review, but a guideline-aim is to show how, by taking a
Bayesian predictive approach, we may

- read recursive predictive algorithms as Bayesian predictive learning rules,
- understand the statistical model & prior implicitly used, if any,

- and provide full Bayesian uncertainty quantification.

Examples and potential applications are many, in statistics (e.g.,
quasi-Bayes approximations of costly Bayesian procedures), and in
machine-learning and Al contexts (e.g., understanding if In-Context
Learning of LLMs is any Bayesian, or how trained transformers learn)!

1Susan Wei's talk at post-Bayes workshop, UCL, May 2025
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1. Bayesian predictive approach

* In the decision-theoretical foundations of Bayesian statistics, we have
agents acting under incomplete information
(not dealing with replicates of experiments)

* Probability is the prescribed way to formalize incomplete information
(uncertainty)

* and should be expressed on observable facts.

Thus the modeling effort is to elicit p(x1,...,x,) (for any n).

Models may convey valuable information, but are just a ring of the chain
(X1,...,X,) = models, parameters — X, 41

thus, properties of models andinference should be thought of in their effects
on prediction
— We can directly reason on what is relevant for prediction and assign

pP(x1,...,ny) = po(x1)p1(x2 | X1) - Pn—1(Xn | X1:n—1).



What is a Bayesian predictive rule?

Because (incomplete) information is expressed through probability,
learning is expressed through conditional probability.

* The predictive distribution P,(-) = P(Xn41 € - | Xq,...,X,) formalizes

how we learn from the data (Xi,..., X,) on the future observation X 1.
(not meant as the true mechanism that generates x,1 given x1.,)

Any predictive rule in this sense is Bayesian.
* The predictive distributions give the finite-dimensional

P(Xl, e »Xn) = Po(Xl)Pl(Xz \ X1) cee pnfl(Xn \ Xl:n71)~

The predictive rule (P,),>0 characterizes the law P of the process,
(Xn)n>1 ~ P (lonescu-Tulcea theorem).
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There are no formal constraints in assigning the predictive rule... but
natural desiderata!

— Basic setting: random sampling
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There are no formal constraints in assigning the predictive rule... but
natural desiderata!

— Basic setting: random sampling

e exchangeability Not mandatory, but natural to judge that labels do
not carry information (‘order does not matter’)

p(le s 7Xn) = p(XO'(].)7 s 5X<7(n))-

Extending to the infinite sequence (X,)s>1 ~ P, natural to ask
invariance under every finite permutation, i.e. (Xs)n>1
exchangeable.

e Check prediction with facts! Minimal requirement: for n large, P,
should agree with empirical frequences: P(d(P,, F,) — 0) = 1.

e Link with inference? Does P, implicitly use a model and a prior?
This would give the latter a predictive justification, and allow
inference.
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Exchangeability

o exchangeability. The predictive rule (P,),>0 characterizes an
exchangeable law P for (X)n>1 iff
*P(Xnt1 | X1:n) invariant to permutations of xi, ..., Xs;
*P(Xpt1, - -+ Xnak | X1:n) invariant to permutations of x,41, ..., Xptk

e Check with facts. Under exchangeability, the empirical lt',, and the
predictive distributions P, converge, to the same limit IN-_ a random
distribution

limF, = limP, = F.

e Link to inference: de Finetti representation theorem.
(informal). If (X;)n>1 ~ P is exchangeable, then P can be
represented as

X | FZF,

where F = lim IA-_,7 =limP,.



predictive characterizations

Thus, in a predictive approach, we can directly move from the predictive
rule (P,),n > 0; if exchangeable, it characterize the ‘model’ as
F =lim P, and the prior as its distribution.

2Blackwell & Mac Queen, Ann. Statist., 1973
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predictive characterizations

Thus, in a predictive approach, we can directly move from the predictive
rule (P,),n > 0; if exchangeable, it characterize the ‘model’ as
F = lim P, and the prior as its distribution.

Example. Pdlya sequences? (Xn)n>1 such that X; ~ Py and for n > 1

Xn+1‘Xl:nNPn('):a+n O a+ Z(SX,

Thrm The sequence (X,) is exchangeable.
P, — F and X; | F " F, where F ~ DP(a, Py).

Predictive characterizations have a long tradition in Bayesian statistics,
and encourage a tractable predictive rule. Yet, often not easy to have
exchangeability AND a tractable predictive rule!

E..g., beyond trivial cases, smoothing the point masses d,,(-) with kernels
K(+; xi) when dealing with continuous data breaks exchangeability.

2Blackwell & Mac Queen, Ann. Statist., 1973
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2. Asymptotic exchangeability

Our idea is to accept an approximation in terms of asymptotic
exchangeability.

Exchangeability implies that P, — F. The reverse is not true, but:
Thrm(Aldous, 1983) If P, converges to a random probability distribution
F, then (X,)n,>1 is asymptotically exchangeable; informally, for n > N
large,

~ jid ~ ~
X, | FR=F withF ~ .
an approx exchangeable setting where, again, the model is F=limP,

and its probability law is the “implicit” prior.
Moreover, (Rigo; see Bissiri & Walker, EJS, 2025) also F = lim F,.



How can we assign a convergent predictive rule?
How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?



How can we assign a convergent predictive rule?
How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?



Martingale predictive, or c.i.d. sequences

* A sufficient condition for P, — F is that (Pn)n>0 is a measure-valued

martingale; equivalently, X, x | X1 g Xot1 | Xun k>1,0e. (Xa)n>1
is c.i.d.(Berti et al, Ann. Prob.2004)

* Thrm.(Kallenberg, 1998) (X,) exchangeable if and only if it is
stationary and (P,) is a martingale.
(we break stationarity: time - the order - matters, in the initial stage)



Turning algorithms into Bayesian

predictive rules
There are many predictive algorithms, that we can read as Bayesian
predictive learning rules!

A ‘statistical’ example. Consider the popular DP mixture model

X: | G fo(x) = /k(x 16)dG(8), G ~~ DP(a, G).

Suppose data arrive sequentially, and interest is in estimating the mixing
distribution G, updating the estimate as a new x; becomes available.
Computations; MCMC no! sequential MC, or sequential VB...?
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Turning algorithms into Bayesian

predictive rules
There are many predictive algorithms, that we can read as Bayesian
predictive learning rules!

A ‘statistical’ example. Consider the popular DP mixture model

X: | G fo(x) = /k(x 16)dG(8), G ~~ DP(a, G).

Suppose data arrive sequentially, and interest is in estimating the mixing
distribution G, updating the estimate as a new x; becomes available.
Computations; MCMC no! sequential MC, or sequential VB...?

— “A recursive algorithm”: start from Gy() at t =0 and for t > 1
recursively update

Gt(9) = (1 — Oz,,)Gt_l(@) —+ OénGt_]_(g | Xt)‘
At step t = n, G,(0) is the proposed estimate of G(6). (“Newton's

algorithm” in the BNP literature).
But, uncertainty around G,? In fact, is this algorithm any Bayesian?



A Bayesian predictive rule
By taking a predictive approach, we (Fortini & P. (2020), JRSS,B) can read
it as a Bayesian predictive learning rule,

Xn+1|x.0~ Pp=Fg (x)= /K(X | 0)dG,L(6)

= (1 - an)Prs +a,,/K(~ | 0)dGn_1(0 | xa)-
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A Bayesian predictive rule

By taking a predictive approach, we (Fortini & P. (2020), JRSS,B) can read
it as a Bayesian predictive learning rule,

Xn+1|x.0~ Pp=Fg (x)= /K(X | 0)dG,L(6)

= (1 - an)Prs +a,,/K(~ 1 0)dGo_1(6 | xn)-

Then we show that (P,),>0 is a martingale, and P, converges to
F=Fz=[K(-|0dG(0), where G = lim G,.

Thus, the algorithm is using an asymptotically exchangeable
Bayesian mixture model; for n > N large

Xi | G fo(x) = /k(x | 0)dG(6)
with an implicit prior on G.

— The prior, and the posterior distribution of G are not explicit, but
we will approximate them!



Example: online gradient descent
— Classify items that arrive sequentially: (X,, Y,), where X, are features
and Y, is type, 0 — 1. One models

'D(Yn =1 | Xn) :g(Xnvﬁ)

for a known, but possibly complex, g, e.g. neural network, and an
unknown vector 3.

Given a training sample (x1,¥1), ..., (Xn, ¥n), it is common to estimate (3
by minimizing a loss function L(f3; x1.n, y1.n) measuring the discrepancy
between the actual values y1,...,y, and the ones predicted by the model.

A popular recursive algorithm is the online gradient descent that is
initialized at By and for n=1,2,...

1
ﬁn = anl - ; VBL(anl; Xm)/n)-

E.g., with the binary cross entropy loss, and logistic function g(x, ),

Bn = ﬁnfl + ()/n - g(Xmanl))Xw

nlog?2



A Bayesian predictive rule!

We can read it as a Bayesian predictive learning rule for the sequence
((Xn, Ya))n=1, by taking X; % p, and letting

(Xn+1a Yn+1) | X1:ns Y1:n ™~ Pn(Xay)
where P, is such that
P(Yn+1 =1 | Xl:n»y1:n7Xn+1) = g(Xn+17ﬁn)~

Then under general conditions 3, — B random, and P,(x, y) converges
to a random F(x,y), such that, for n large

~ ind 3 ~
Yo | Xn, 8 = Bernoulli(g(xn+1,5)),
with an implicit prior on B Moreover

ﬂn - E(B | Xl:nay1:n)~



inference on (3

We can then make Bayesian inference on ¢ (“without the prior") with an
implicit prior on .
BUT, how can we obtain the implied posterior distribution?

Not by predictive resampling, as we's need to sample pairs
(Xn+1, Ynt1), - - -, thus need the distribution of the X;!

— Provide asymptotic approximation of the implicit posterior ofB

We prove that, under regularity conditions,

- V,
ﬁ ‘ X1:n; Y1:n = Nd(ﬁna 7)

where

Vo= T3 KB B )P~ s )T
k=1

does not depend on Px; and asymptotic credible intervals for B
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How can we approximate inference, not having the (explicit) prior?
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Link with parametric models

In the examples, the model F = lim P, implied by the algorithm (the
predictive rule) is semi-parametric (in the mixture example, B
F= Fe=[K(| 0dG(0), the parameter is G), or parametric, F = Fs.

In the general case, P, — F, and the asymptotic model is F.
Parametric if P, — F;.

In parametric models Fy(x), under exchangeability, 6 typically is the limit
of a predictive sufficient statistic, which inspires the specification

Pn(Xn+1 | X1 7Xn) = F(Xn+1 | Tn(Xla S 7Xn)) = FT,,(Xn+1)a

where T, is computed recursively as a function of T,_1 and x,; in
particular,
Tn=Th 1+ anh( Th-1, Xn)~

Under conditions, T, —  and P, = Fr1, — Fz. Thus, asymptotically,
~d ~
X | 0~ F; where § =lim T, has an implicit prior law.

* This is related to the plug-in predictive (Walker, 2022; see Fong &
Yiu, 2024+) where T, = 6,, e.g. MLE.
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posterior approximation

The prior remains implicit. How can we approximate the posterior
distribution?

e Sample from it! predictive Monte Carlo, or predictive resampling,
(Fortini & P., JRSS, 2020; Fong, Holmes & Walker, JRSS, B, 2023).

e Gaussian asymptotic approximations of the posterior distribution of
¢, in parametric cases; or of the posterior distribution of F(t), for a
fixed t or on a grid, or of the entire process F, in the general case.

The latter are not BvM results; rather refine Doob’s theorem
(“Doob-BvM™).



Predictive Monte Carlo

Suppose P, — I-_,~and interest is in inference on F(t), or in a
functional ¢ = 0(F), e.g. [ xdF(x).

We can design a predictive Monte Carlo, or predictive resampling
algorithm to sample from their prior and posterior distributions.3

3Fortini & P., JRSS, B, (2020); Fong, Holmes, Walker, JRSS, B, (2023)
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Predictive Monte Carlo

Suppose P, — I-_,~and interest is in inference on F(t), or in a
functional ¢ = 0(F), e.g. [ xdF(x).

We can design a predictive Monte Carlo, or predictive resampling
algorithm to sample from their prior and posterior distributions.3
Sampling from the posterior

- Given data x1., use the predictive rule to generate (Xpt1, Xn42, - - )
truncated at a large N: get xi.p.

- Compute the empirical Fy(t) = Z{V:I Ox; (t), or the pred Pu(t | x1.n).

Because P, — F, and N is large, Pn(t) approximates I:_(t),
a sample from the posterior of F(t).

- Repeat M times: (approx) Monte Carlo sample of size M from the
posterior.

e If interest in 6 = O(F): compute the empirical 6(Fy) at each iteration, to
get an approx Monte Carlo sample from the posterior dist. of 6.

If n =0 : sampling from the prior.

3Fortini & P., JRSS, B, (2020); Fong, Holmes, Walker, JRSS, B, (2023)
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about its limit, reflected in a small posterior variance.
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Predictive Monte Carlo does not require MCMC!

But also interesting to have analytic approximations — in some cases,
better! e.g., in the logistic regression ex: we should sample pairs (X,, Y,)
but do not have Px.
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Remember that F = lim P,. Given data xy.,, we are uncertain about the
limit F of P,. uncertainty formalized in the posterior distribution of F is
such an uncertainty, ‘due to the missing obs", and depends on the
behavior of P,,.

Intuitively, if P, — F at a fast rate, then for finite n we will be fairly sure
about its limit, reflected in a small posterior variance.



From the predictive to the posterior distr.
Consider the predictive updates
Ai.‘.n = Pn(t) - Pnfl(t)7

how the predictive distribution at t varies in response to the new

observation x,. Let
1 n
Ven =~ ; KD 2.

Thrm* Under regularity conditions,

Vn,t(Xl:n)
n

’E(t) ‘ X1:n = N(Pn(t)7 )

for P-almost all w = (x1, x2, .. .). 3

The approximation is centered on P,(t) = E(F(t) | x1.n).

The asymptotic variance depends on the way the predictive distribution
learns from the data.

4Fortini & P., Phil. Trans. Roy. Soc., 2023; Fortini & P., Statistical Science, 2025
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Vi Vin
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Predictive efficiency?

We can obtain asymptotic credible intervals for F(t) given xy.,

Vi Vin
Pa(t) — Zla/2\/77 Pa(t) + Zl-af2 ;7 }

The size of the credible interval depends on the convergence rate of P,.

Yet, is P, “learning well? is it “efficient”?

It has to balance a convergence rate with a proper learning rate
(Ex, if P, = Py for any n, it converges immediately, but does not learn
from the data!)



example
Example: F ~ DP(aPp); then

Po(t) = — 2 Po(t) 4 — zn:(sx,,(t)

a-+n aJrn_1
1=




example
Example: F ~ DP(aPp); then
1 O 1
> 0(t) = Poa(t)+

i=1

P.(t) =

Po(t)+ (0, ()= Pn-1(1)),

a-+n a+n a+n

and
Benlt) = — 164 (6) = Poa(0)

depends on a: if « large, Ay, is small: given xq.,_1, we do not learn
much from the new observation x, in predicting x,;1



example
Example: F ~ DP(aPp); then
1 O 1
S784(8) = Pa(t)+

i=1

P.(t) =

Po(t
a-+n 0( )+a+n

(0, ()= Pn-1(1)),

a—+n
and 1
Ben(t) = — [0 (t) = Poa(2)]

depends on a: if « large, Ay, is small: given xq.,_1, we do not learn
much from the new observation x, in predicting x,;1

P()
P(®)

00 04 08

00 04 08

00 02 04 06 08 10 00 02 04 06 08 10
Marginal 0.95 credible intervals for F(t) for t on a grid: o = 1 (left
panel) and o = 100 (right). Solid curve: True F.



Predictive inferential-efficiency?

This calls for a notion of predictive efficiency..

In frequentist stats: inferential efficiency: (asymptotic) variance of
unbiased efficient estimators in terms of Fisher information..

Is there a notion of efficiency in Bayesian Stats?
- rather, loss function and optimality..
- scoring rules, calibration..

- Here: IF the X; are indeed iid from Fy.e, is the predictive rule able to
learn that, “efficiently” ? giving good frequentist coverage of the implied
credible intervals?



Predictive inferential-efficiency?

This calls for a notion of predictive efficiency..

In frequentist stats: inferential efficiency: (asymptotic) variance of
unbiased efficient estimators in terms of Fisher information..

Is there a notion of efficiency in Bayesian Stats?
- rather, loss function and optimality..
- scoring rules, calibration..

- Here: IF the X; are indeed iid from Fy.e, is the predictive rule able to
learn that, “efficiently” ? giving good frequentist coverage of the implied
credible intervals?

The latter is usually studied through BvM results. Ours are not BvM
results: they hold with prob one, moreover the asymptotic variance is
expressed in terms of the predictive updates, not of Fisher information.

Yet, in a predictive approach, they may suggest conditions on the
predictive rule — on its learning rate — that ensure inferential efficiency
and good frequentist coverage.



Some preliminary results

Consider the ‘parametric predictive’ rule
Po(Xpse1 | X1; .0, Xn) = F(xps1 | Ta(1, ..., X3)) = Fr,(Xns1,

with
Tn = Tn—l + ap, h( Tn—17 Xn)
Under conditions, T, — d and P, = Fr, — F3, thus, asymptotically,

~ iid o
Xn | 0 ~ Fz where 6 = lim T,, and has an implicit prior.



Some preliminary results

Consider the ‘parametric predictive’ rule
Po(Xpse1 | X1; .0, Xn) = F(xps1 | Ta(1, ..., X3)) = Fr,(Xns1,
with
Tn = Tn—l + ap, h( Tn—17 Xn)
Under conditions, T, — d and P, = Fr, — F3, thus, asymptotically,
X | 6 < Fz where 6 = lim T,, and has an implicit prior.

Conditions on the updating:
* o, positive decreasing with >~>°  «,, = o0 and > kon a2 < oo, and
* h satisfies E(h(0, X)) = 0 and E(h;(0, X)?) < oo where X ~ Fy.

Then (T,)n>0 is a uniformly integrable martingale converging to 4.



posterior distribution of 8

By the a.s. conditional CLT for martingaless, we can show that, for
P-almost all (x1, x2, .. .),

Va0 = To) [ xtn = N(0, U, )
where b, = (32>, 0%) " and

Uj = limE(h(Tp Xa)h(Toy Xa) T | X1, -+, Xo1)
= Var(h(d, X) | )
Thus, for n large,
Uy

é‘xlzn%N(Tna b )a

5Crimaldi, 2009



Thus, for n large,
. Us
0| x1.p = ./\f(T,,, 79)
b
* The rate, b, ! =3 ,., a2, is generally slower than 1/n, unless
ap, ~1/n. B

* The asymptotic posterior variance

Up = lim E(h( Ty, Xp)h( T, Xu)T | X1, .., X,—1), that again depends on
the predictive updates, correspond to the inverse of Fisher information
[,(0) for the model py if the 'loss’ h is suitably chosen.



Thus, for n large,
- Us
0| x1.p = N(Tna 79)
b
* The rate, b, ! =3 ,., a2, is generally slower than 1/n, unless
ap, ~1/n. B

* The asymptotic posterior variance

Up = lim E(h( Ty, Xp)h( T, Xu)T | X1, .., X,—1), that again depends on
the predictive updates, correspond to the inverse of Fisher information
[,(0) for the model py if the 'loss’ h is suitably chosen.

— An idea for such a “predictive inferential-efficiency” is to use
score-adjusted predictive rules with

Tn = Tn—l + ap I(Tn—1)71 5( Tn—laXn)

where s(0, X) = 0 logpg(x)/08 is the score function, (elaborating from
Walker (2022), Holmes & Walker (2023), Wang & Holmes (2024); Fong & Yiu
(2024+).

E.g., this suggests to improve the online gradient descent updating
in the logistic example by including I(T,_1)~ .



Frequentist coverage?

Again, the asymptotic approximations still hold if the random variance
Uj is replaced by ‘an estimate’ (e.g. Ur,) that converges to Uy, allowing
to obtain predictive-based asymptotic credible intervals for -

-+ that would have good frequentist coverage (very informally: “for
almost all ")

...BUT not BvM yet; rather “Doob-BvM", with conditions on the
predictive updates

(some recent results by Fong & Yiu, 2024+, and by Fortini & P. -
ongoing )



Multivariate extensions

For short, the previous results were shown for the univariate case. For
martingale predictive rules P, — F, so that

i -
X;i| F=F for nlarge.

we can approximate the posterior distribution of /N-_(t) for a fixed t

— The results extend to the posterior distribution of F(t) for t on a grid,

and to the entire distribution F.

The latter may allow to approximate the posterior distribution of
functionals of F (e.g., p = [ xdF(x), quantiles F~1(p), ...)



predictive inference on [F(t1), ..., F(t)]

Consider a grid t1.4 with P(X; € {t1,...,t}) =0, and the column vector
of predictive updates A, = [A¢, .-, Apn] "

Proposition
If there is a sequence (&), with a;, > 0, Z‘;il o, = oo and
Zkznai < 00 such that

e E(sup,an'/?| Ay n]) < 00

o Y a2E(AL,) <00, j=1,...,k

o E(a;2Benl/, | X1, .o Xo1) = ﬂtgk, P-a.s.,

for a positive definite random matrix Uy,

then, P-a.s.



~

inference on F

Theorem

Suppose the same conditions hold for any (t1,. .., t).

If there exists ny and a non-decreasing random element Hof D (space of
cadlag functions, with Skorohod topology) such that for every n > ny,

E(a;(Aen — Dsp)? | X1y, X,) < H() — A(s) P-as.
for every s < t, then, P-a.s.,
Vba (Po— E) | X1, ..., X0 5 G(U),

where b, = (3", ,a2)", and G(U) is a centered Gaussian process
with kernel U satisfying U(t;, t;) = Uy, ¢)[i,j]. and U(t, t) = U..



Time dependence
Breaking exchangeability, order matters. In the DP mixture example,
Newton's algorithm — as a predictive rule — is implicitly assuming a
time-dependent mixture model

X | &% [ K(16)dG,(6)

with a specific temporal evolution of the random (G,); in particular,
E(Ga(-) = Go(+) and G, converges to a random G; (details in Fortini & P.
JRSS, B 2020).

This may be an interesting model when one actually has time. In a static
setting, it is an asymptotic approximation of an exchangeable mixture
model with G constant — intuitively, the closer to it the ‘more stable’ the
G, are.

* Again, the learning coefficients «,, have a crucial dual role in

— driving the rate of convergence of G, to the limit G (we'd like it to be
fast, to quickly reach exchangeability)

— driving the learning rate (we'd like to be fairly slow, to actually learn
from the observations as they become available).

* The role of the loss function is unexplored in this semi-parametric

PRI T



Beyond random sampling

| have here considered the basic setting, random sampling —
exchangeability.

Extensions to more elaborated sampling schemes and settings - e.g.,
fixed-design regression and partial exchangeability, and time series ...- are
only partially developed.

A direction for extensions to partially exchangeable structures and
possibly Markov chains is to move from the notion of partially c.i.d.
arrays (Fortini, P. & Sporysheva, Bernoulli, 2016).



Final remarks & open problems

e We can take a Bayesian predictive approach to deal with (some
classes of) recursive predictive algorithms

e |s the predictive rule implicitly using an inferential scheme?
Then we can provide Bayesian uncertainty quantification (without
the (explicit) prior!)

e Inferential properties depends on the capacity of the predictive
distribution of learning from the data.
— "“predictive efficiency"?
— Frequentist properties?
— More genuinely predictive criteria? Calibration and scoring rules?

e more on extensions beyond random sampling (asymptotic partial
exchangeability, ...)

Thank you for attending this lecture!
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