Bayesian predictive-based uncertainty quantification

Sonia Petrone

Bocconi University, Milan

Second SISBayes workshop, 4-5 September 2025, University of Padova

tre Maestri: Eugenio Regazzini, Persi Diaconis, Michael Jordan – Conference in honor of Eugenio Regazzini, 10-11 June 2016, Pavia

tre Maestri: Eugenio Regazzini, Persi Diaconis, Michael Jordan – Conference in honor of Eugenio Regazzini, 10-11 June 2016, Pavia

Here, joint works with Sandra Fortini

Inferential vs predictive approach in Stats

We are all familiar, at least since Leo Breiman's (2001, *Statistical Science*), with the "two cultures" - classic statistical inference versus algorithmic prediction.

And the more so, with Stats and Al...

The Bayesian approach has prediction in its foundations, and can naturally combine both cultures.

Classic: from inference to prediction

In classic statistics, prediction is guided by the study of the phenomenon of interest and the resulting inferential model.

In the Bayesian approach,

$$(X_1,\ldots,X_n)\mid \theta \sim p(x_1,\ldots,x_n\mid \theta), \quad n\geq 1$$

where θ is described as random with prior distribution π , from which we obtain the **predictive distribution**

$$\textbf{X}_{n+1} \mid \textbf{x}_{1:n} \sim p_n(\textbf{x}_{n+1} \mid \textbf{x}_{1:n}) = \int p(\textbf{x}_{n+1} \mid \textbf{x}_{1:n}, \theta) d\pi(\theta \mid \textbf{x}_{1:n}),$$

with full Bayesian uncertainty quantification.

Classic: from inference to prediction

In classic statistics, prediction is guided by the study of the phenomenon of interest and the resulting inferential model.

In the Bayesian approach,

$$(X_1,\ldots,X_n)\mid \theta \sim p(x_1,\ldots,x_n\mid \theta), \quad n\geq 1$$

where θ is described as random with prior distribution π , from which we obtain the **predictive distribution**

$$\boldsymbol{X}_{n+1} \mid \boldsymbol{x}_{1:n} \sim p_n(\boldsymbol{x}_{n+1} \mid \boldsymbol{x}_{1:n}) = \int p(\boldsymbol{x}_{n+1} \mid \boldsymbol{x}_{1:n}, \boldsymbol{\theta}) d\pi(\boldsymbol{\theta} \mid \boldsymbol{x}_{1:n}),$$

with full Bayesian uncertainty quantification.

However, specifying the proper model or eliciting the prior may be difficult (e.g., parameters lose interpretation in black-box models). Moreover, **computations** may be overwhelming, especially with streaming data.

from prediction to inference

On the other hand, we have a wealth of *predictive algorithms* [a strategy to provide predictions, with no explicit likelihood or priors] that perform well.. but often lack clean understanding and uncertainty quantification.

This talk is a review, but a guideline-aim is to show how, by taking a Bayesian predictive approach, we may

- read recursive predictive algorithms as Bayesian predictive learning rules,
- understand the statistical model & prior implicitly used, if any,
- and provide full Bayesian uncertainty quantification.

Examples and potential applications are many, in statistics (e.g., quasi-Bayes approximations of costly Bayesian procedures), and in machine-learning and Al contexts (e.g., understanding if In-Context Learning of LLMs is any Bayesian, or how trained transformers learn)¹

1 Bayesian predictive approach.

What is a Bayesian predictive rule? Basic desiderata – in random sampling From prediction to inference

2 Asymptotic exchangeability and predictive algorithms

Asymptotic exchangeability
From the predictive rule (algorithms) to inference
Turning algorithms into Bayesian predictive rules
Bayesian uncertainty quantification - approximating the posterior
distribution

3 Directions and ongoing work

Predictive "efficiency"
Multivariate extensions
Understanding time (order) dependence
Beyond random sampling

1. Bayesian predictive approach

- * In the decision-theoretical foundations of Bayesian statistics, we have agents acting under incomplete information (not dealing with replicates of experiments)
- * Probability is the prescribed way to formalize incomplete information (uncertainty)
- * and should be expressed on observable facts.

Thus the modeling effort is to elicit $p(x_1, ..., x_n)$ (for any n).

Models may convey valuable information, but are just a ring of the chain

$$(X_1,\ldots,X_n) o \mathsf{models}$$
, parameters $o X_{n+1}$

thus, properties of models and inference should be thought of in their effects on prediction

ightarrow We can directly reason on what is relevant for prediction and assign

$$p(x_1, ..., n_n) = p_0(x_1)p_1(x_2 \mid x_1) \cdots p_{n-1}(x_n \mid x_{1:n-1}).$$

What is a Bayesian predictive rule?

Because (incomplete) information is expressed through probability, learning is expressed through conditional probability.

* The predictive distribution $\mathbf{P_n}(\cdot) = \mathbb{P}(\mathbf{X_{n+1}} \in \cdot \mid \mathbf{X_1}, \dots, \mathbf{X_n})$ formalizes how we learn from the data (X_1, \dots, X_n) on the future observation X_{n+1} . (not meant as the true mechanism that generates x_{n+1} given $x_{1:n}$)

Any predictive rule in this sense is Bayesian.

* The predictive distributions give the finite-dimensional

$$p(x_1,...,x_n) = p_0(x_1)p_1(x_2 \mid x_1) \cdots p_{n-1}(x_n \mid x_{1:n-1}).$$

The predictive rule $(P_n)_{n\geq 0}$ characterizes the law $\mathbb P$ of the process, $(X_n)_{n\geq 1}\sim \mathbb P$ (Ionescu-Tulcea theorem).

There are no formal constraints in assigning the predictive rule... but natural desiderata!

→ Basic setting: random sampling

There are no formal constraints in assigning the predictive rule... but natural desiderata!

- \rightarrow Basic setting: random sampling
 - exchangeability Not mandatory, but natural to judge that labels do not carry information ('order does not matter')

$$p(x_1,\ldots,x_n)=p(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Extending to the infinite sequence $(X_n)_{n\geq 1}\sim \mathbb{P}$, natural to ask invariance under every finite permutation, i.e. $(X_n)_{n\geq 1}$ exchangeable.

There are no formal constraints in assigning the predictive rule... but natural desiderata!

- \rightarrow Basic setting: random sampling
 - exchangeability Not mandatory, but natural to judge that labels do not carry information ('order does not matter')

$$p(x_1,\ldots,x_n)=p(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Extending to the infinite sequence $(X_n)_{n\geq 1}\sim \mathbb{P}$, natural to ask invariance under every finite permutation, i.e. $(X_n)_{n\geq 1}$ exchangeable.

• Check prediction with facts! Minimal requirement: for n large, P_n should agree with empirical frequences: $\mathbb{P}(d(P_n, \hat{F}_n) \to 0) = 1$.

There are no formal constraints in assigning the predictive rule... but natural desiderata!

- \rightarrow Basic setting: random sampling
 - exchangeability Not mandatory, but natural to judge that labels do not carry information ('order does not matter')

$$p(x_1,\ldots,x_n)=p(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Extending to the infinite sequence $(X_n)_{n\geq 1}\sim \mathbb{P}$, natural to ask invariance under every finite permutation, i.e. $(X_n)_{n\geq 1}$ exchangeable.

- Check prediction with facts! Minimal requirement: for n large, P_n should agree with empirical frequences: $\mathbb{P}(d(P_n, \hat{F}_n) \to 0) = 1$.
- Link with inference? Does P_n implicitly use a model and a prior? This would give the latter a predictive justification, and allow inference.

Exchangeability

• exchangeability. The predictive rule $(P_n)_{n\geq 0}$ characterizes an exchangeable law $\mathbb P$ for $(X_n)_{n\geq 1}$ iff $*p(x_{n+1}\mid x_{1:n})$ invariant to permutations of $x_1,\ldots,x_n;$ $*p(x_{n+1},\ldots,x_{n+k}\mid x_{1:n})$ invariant to permutations of x_{n+1},\ldots,x_{n+k}

Exchangeability

- exchangeability. The predictive rule $(P_n)_{n\geq 0}$ characterizes an exchangeable law $\mathbb P$ for $(X_n)_{n\geq 1}$ iff $*p(x_{n+1}\mid x_{1:n})$ invariant to permutations of $x_1,\ldots,x_n;$ $*p(x_{n+1},\ldots,x_{n+k}\mid x_{1:n})$ invariant to permutations of x_{n+1},\ldots,x_{n+k}
- Check with facts. Under exchangeability, the empirical \hat{F}_n and the predictive distributions P_n converge, to the same limit \tilde{F} , a random distribution

$$\lim \hat{F}_n = \lim P_n = \tilde{F}.$$

Exchangeability

- exchangeability. The predictive rule $(P_n)_{n\geq 0}$ characterizes an exchangeable law $\mathbb P$ for $(X_n)_{n\geq 1}$ iff $*p(x_{n+1}\mid x_{1:n})$ invariant to permutations of $x_1,\ldots,x_n;$ $*p(x_{n+1},\ldots,x_{n+k}\mid x_{1:n})$ invariant to permutations of x_{n+1},\ldots,x_{n+k}
- Check with facts. Under exchangeability, the empirical \hat{F}_n and the predictive distributions P_n converge, to the same limit \tilde{F} , a random distribution

$$\lim \hat{F}_n = \lim P_n = \tilde{F}.$$

• Link to inference: de Finetti representation theorem. (informal). If $(X_n)_{n\geq 1}\sim \mathbb{P}$ is exchangeable, then \mathbb{P} can be represented as

$$X_i \mid \tilde{F} \stackrel{iid}{\sim} \tilde{F},$$

where $\tilde{F} = \lim \hat{F}_n = \lim P_n$.

predictive characterizations

Thus, in a predictive approach, we can directly move from the predictive rule $(P_n)_n n \ge 0$; if exchangeable, it characterize the 'model' as $\tilde{F} = \lim P_n$ and the prior as its distribution.

²Blackwell & Mac Queen, Ann. Statist., 1973

predictive characterizations

Thus, in a predictive approach, we can directly move from the predictive rule $(P_n)_n n \ge 0$; if exchangeable, it characterize the 'model' as $\tilde{F} = \lim P_n$ and the prior as its distribution.

Example. Pólya sequences² $(X_n)_{n\geq 1}$ such that $X_1 \sim P_0$ and for $n\geq 1$

$$X_{n+1} \mid x_{1:n} \sim P_n(\cdot) = \frac{\alpha}{\alpha + n} P_0(\cdot) + \frac{n}{\alpha + n} \sum_{i=1}^n \delta_{x_i}(\cdot) / n.$$

Thrm The sequence (X_n) is exchangeable.

$$P_n \to \tilde{F}$$
 and $X_i \mid \tilde{F} \stackrel{iid}{\sim} \tilde{F}$, where $\tilde{F} \sim DP(\alpha, P_0)$.

predictive characterizations

Thus, in a predictive approach, we can directly move from the predictive rule $(P_n)_n n \ge 0$; if exchangeable, it characterize the 'model' as $\tilde{F} = \lim P_n$ and the prior as its distribution.

Example. Pólya sequences² $(X_n)_{n\geq 1}$ such that $X_1 \sim P_0$ and for $n\geq 1$

$$X_{n+1} \mid x_{1:n} \sim P_n(\cdot) = \frac{\alpha}{\alpha + n} P_0(\cdot) + \frac{n}{\alpha + n} \sum_{i=1}^n \delta_{x_i}(\cdot) / n.$$

Thrm The sequence (X_n) is exchangeable.

$$P_n \to \tilde{F}$$
 and $X_i \mid \tilde{F} \stackrel{iid}{\sim} \tilde{F}$, where $\tilde{F} \sim DP(\alpha, P_0)$.

Predictive characterizations have a long tradition in Bayesian statistics, and encourage a **tractable** predictive rule. Yet, often not easy to have exchangeability AND a tractable predictive rule!

E..g., beyond trivial cases, smoothing the point masses $\delta_{x_i}(\cdot)$ with kernels $K(\cdot; x_i)$ when dealing with continuous data breaks exchangeability.

²Blackwell & Mac Queen, Ann. Statist., 1973

2. Asymptotic exchangeability

Our idea is to accept an approximation in terms of asymptotic exchangeability.

2. Asymptotic exchangeability

Our idea is to accept an approximation in terms of asymptotic exchangeability.

Exchangeability implies that $P_n \to \tilde{F}$. The reverse is not true, but: **Thrm**(Aldous, 1983) If P_n converges to a random probability distribution \tilde{F} , then $(X_n)_{n\geq 1}$ is asymptotically exchangeable;

2. Asymptotic exchangeability

Our idea is to accept an approximation in terms of asymptotic exchangeability.

Exchangeability implies that $P_n \to \tilde{F}$. The reverse is not true, but: **Thrm**(Aldous, 1983) If P_n converges to a random probability distribution \tilde{F} , then $(X_n)_{n\geq 1}$ is asymptotically exchangeable; informally, for n>N large,

$$X_n \mid \tilde{F} \stackrel{iid}{\approx} \tilde{F} \quad \text{with } \tilde{F} \sim \pi.$$

an approx exchangeable setting where, again, the model is $\tilde{F} = \lim P_n$ and its probability law is the "implicit" prior.

Moreover, (Rigo; see Bissiri & Walker, EJS, 2025) also $\tilde{F} = \lim \hat{F}_n$.

How can we assign a convergent predictive rule?

How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?

How can we assign a convergent predictive rule?

How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?

Martingale predictive, or c.i.d. sequences

- * A sufficient condition for $P_n \to \tilde{F}$ is that $(P_n)_{n\geq 0}$ is a measure-valued martingale; equivalently, $X_{n+k} \mid X_{1:n} \stackrel{d}{=} X_{n+1} \mid X_{1:n} \quad k \geq 1$, i.e. $(X_n)_{n\geq 1}$ is c.i.d.(Berti et al, Ann. Prob.2004)
- * Thrm.(Kallenberg, 1998) (X_n) exchangeable if and only if it is stationary and (P_n) is a martingale. (we break stationarity: time the order matters, in the initial stage)

Turning algorithms into Bayesian predictive rules

There are many *predictive algorithms*, that we can read as Bayesian predictive learning rules!

A 'statistical' example. Consider the popular DP mixture model

$$X_t \mid G \stackrel{iid}{\sim} f_G(x) = \int k(x \mid \theta) dG(\theta), \quad G \sim \sim DP(\alpha, G_0).$$

Suppose data arrive sequentially, and interest is in estimating the mixing distribution G, updating the estimate as a new x_t becomes available. Computations; MCMC no! sequential MC, or sequential VB...?

Turning algorithms into Bayesian predictive rules

There are many *predictive algorithms*, that we can read as Bayesian predictive learning rules!

A 'statistical' example. Consider the popular DP mixture model

$$X_t \mid G \stackrel{iid}{\sim} f_G(x) = \int k(x \mid \theta) dG(\theta), \quad G \sim DP(\alpha, G_0).$$

Suppose data arrive sequentially, and interest is in estimating the mixing distribution G, updating the estimate as a new x_t becomes available. Computations; MCMC no! sequential MC, or sequential VB...?

 \rightarrow "A recursive algorithm": start from $G_0(\theta)$ at t=0 and for $t\geq 1$ recursively update

$$G_t(\theta) = (1 - \alpha_n)G_{t-1}(\theta) + \alpha_nG_{t-1}(\theta \mid x_t).$$

At step t = n, $G_n(\theta)$ is the proposed estimate of $G(\theta)$. ("Newton's algorithm" in the BNP literature).

Turning algorithms into Bayesian predictive rules

There are many *predictive algorithms*, that we can read as Bayesian predictive learning rules!

A 'statistical' example. Consider the popular DP mixture model

$$X_t \mid G \stackrel{iid}{\sim} f_G(x) = \int k(x \mid \theta) dG(\theta), \quad G \sim DP(\alpha, G_0).$$

Suppose data arrive sequentially, and interest is in estimating the mixing distribution G, updating the estimate as a new x_t becomes available. Computations; MCMC no! sequential MC, or sequential VB...?

 \rightarrow "A recursive algorithm": start from $G_0(\theta)$ at t=0 and for $t\geq 1$ recursively update

$$G_t(\theta) = (1 - \alpha_n)G_{t-1}(\theta) + \alpha_n G_{t-1}(\theta \mid x_t).$$

At step t = n, $G_n(\theta)$ is the proposed estimate of $G(\theta)$. ("Newton's algorithm" in the BNP literature).

But, uncertainty around G_n ? In fact, is this algorithm any Bayesian?

A Bayesian predictive rule

By taking a predictive approach, we (Fortini & P. (2020), JRSS,B) can read it as a Bayesian predictive learning rule,

$$Xn + 1 \mid x_{1:n} \sim P_n = F_{G_n}(x) = \int K(x \mid \theta) dG_n(\theta)$$
$$= (1 - \alpha_n) P_{n-1} + \alpha_n \int K(\cdot \mid \theta) dG_{n-1}(\theta \mid x_n).$$

A Bayesian predictive rule

By taking a predictive approach, we (Fortini & P. (2020), JRSS,B) can read it as a Bayesian predictive learning rule,

$$Xn + 1 \mid x_{1:n} \sim P_n = F_{G_n}(x) = \int K(x \mid \theta) dG_n(\theta)$$
$$= (1 - \alpha_n) P_{n-1} + \alpha_n \int K(\cdot \mid \theta) dG_{n-1}(\theta \mid x_n).$$

Then we show that $(P_n)_{n\geq 0}$ is a martingale, and P_n converges to $\tilde{F} = F_{\tilde{G}} = \int K(\cdot \mid \theta d\tilde{G}(\theta), \text{ where } \tilde{G} = \lim G_n.$

Thus, the algorithm is using an asymptotically exchangeable Bayesian mixture model; for n > N large

$$X_i \mid G \stackrel{iid}{\approx} f_G(x) = \int k(x \mid \theta) dG(\theta)$$

with an implicit prior on \tilde{G} .

A Bayesian predictive rule

By taking a predictive approach, we (Fortini & P. (2020), JRSS,B) can read it as a Bayesian predictive learning rule,

$$Xn + 1 \mid x_{1:n} \sim P_n = F_{G_n}(x) = \int K(x \mid \theta) dG_n(\theta)$$
$$= (1 - \alpha_n) P_{n-1} + \alpha_n \int K(\cdot \mid \theta) dG_{n-1}(\theta \mid x_n).$$

Then we show that $(P_n)_{n\geq 0}$ is a martingale, and P_n converges to $\tilde{F} = F_{\tilde{G}} = \int K(\cdot \mid \theta \, d\, \tilde{G}(\theta))$, where $\tilde{G} = \lim G_n$.

Thus, the algorithm is using an asymptotically exchangeable Bayesian mixture model; for n > N large

$$X_i \mid G \stackrel{iid}{\approx} f_G(x) = \int k(x \mid \theta) dG(\theta)$$

with an implicit prior on \tilde{G} .

ightarrow The prior, and the posterior distribution of \tilde{G} are not explicit, but we will approximate them!

Example: online gradient descent

 \rightarrow Classify items that arrive sequentially: (X_n, Y_n) , where X_n are features and Y_n is type, 0-1. One models

$$P(Y_n = 1 \mid x_n) = g(x_n, \beta)$$

for a known, but possibly complex, g, e.g. neural network, and an unknown vector β .

Given a training sample $(x_1, y_1), \ldots, (x_n, y_n)$, it is common to estimate β by minimizing a loss function $L(\beta; x_{1:n}, y_{1:n})$ measuring the discrepancy between the actual values y_1, \ldots, y_n and the ones predicted by the model.

A popular recursive algorithm is the online gradient descent that is initialized at β_0 and for $n=1,2,\ldots$

$$\beta_n = \beta_{n-1} - \frac{1}{n} \nabla_{\beta} L(\beta_{n-1}; x_n, y_n).$$

E.g., with the binary cross entropy loss, and logistic function $g(x, \beta)$,

$$\beta_n = \beta_{n-1} + \frac{1}{n \log 2} (y_n - g(x_n, \beta_{n-1})) x_n.$$

A Bayesian predictive rule!

We can read it as a Bayesian predictive learning rule for the sequence $((X_n, Y_n))_{n \ge 1}$, by taking $X_i \stackrel{iid}{\sim} p_x$ and letting

$$(X_{n+1}, Y_{n+1}) \mid x_{1:n}, y_{1:n} \sim P_n(x, y)$$

where P_n is such that

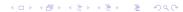
$$P(Y_{n+1} = 1 \mid x_{1:n}, y_{1:n}, x_{n+1}) = g(x_{n+1}, \beta_n).$$

Then under general conditions $\beta_n \to \tilde{\beta}$, random, and $P_n(x,y)$ converges to a random $\tilde{F}(x,y)$, such that, for n large

$$Y_n \mid x_n, \tilde{\beta} \stackrel{ind}{\approx} Bernoulli(g(x_{n+1}, \tilde{\beta})),$$

with an implicit prior on $\tilde{\beta}$. Moreover

$$\beta_n = E(\tilde{\beta} \mid x_{1:n}, y_{1:n}).$$



inference on \tilde{eta}

We can then make Bayesian inference on $\tilde{\beta}$ ("without the prior") with an implicit prior on $\tilde{\beta}$.

BUT, how can we obtain the implied posterior distribution?

Not by predictive resampling, as we's need to sample pairs $(x_{n+1}, y_{n+1}), \ldots$, thus need the distribution of the X_i !

ightarrow Provide asymptotic approximation of the implicit posterior of $ilde{eta}$

We prove that, under regularity conditions,

$$\tilde{\beta} \mid x_{1:n}, y_{1:n} \approx \mathcal{N}_d(\beta_n, \frac{V_n}{n})$$

where

$$V_n = \frac{1}{n} \sum_{k=1}^{n} k^2 (\beta_k - \beta_{k-1}) (\beta_k - \beta_{k-1})^T$$

does not depend on P_X ; and asymptotic credible intervals for $\tilde{\beta}$.

How can we assign a convergent predictive rule?

How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?

In the examples, the model $\tilde{F} = \lim P_n$ implied by the algorithm (the predictive rule) is semi-parametric (in the mixture example, $\tilde{F} = F_{\tilde{G}} = \int K(\cdot \mid \theta d\, \tilde{G}(\theta))$, the parameter is \tilde{G}), or parametric, $\tilde{F} = F_{\tilde{\beta}}$.

In the general case, $P_n \to \tilde{F}$, and the asymptotic model is \tilde{F} . Parametric if $P_n \to F_{\tilde{\theta}}$.

In the examples, the model $\tilde{F} = \lim P_n$ implied by the algorithm (the predictive rule) is semi-parametric (in the mixture example, $\tilde{F} = F_{\tilde{G}} = \int K(\cdot \mid \theta d\, \tilde{G}(\theta))$, the parameter is \tilde{G}), or parametric, $\tilde{F} = F_{\tilde{\beta}}$.

In the general case, $P_n \to \tilde{F}$, and the asymptotic model is \tilde{F} . Parametric if $P_n \to F_{\tilde{\theta}}$.

In parametric models $F_{\theta}(x)$, under exchangeability, $\tilde{\theta}$ typically is the limit of a predictive sufficient statistic, which inspires the specification

$$P_n(x_{n+1} \mid X_1; \dots, X_n) = F(x_{n+1} \mid T_n(X_1, \dots, X_n)) \equiv F_{T_n}(x_{n+1}),$$

where T_n is computed recursively as a function of T_{n-1} and x_n ; in particular,

$$T_n = T_{n-1} + \alpha_n h(T_{n-1}, X_n).$$

In the examples, the model $\tilde{F} = \lim P_n$ implied by the algorithm (the predictive rule) is semi-parametric (in the mixture example, $\tilde{F} = F_{\tilde{G}} = \int K(\cdot \mid \theta d\tilde{G}(\theta))$, the parameter is \tilde{G}), or parametric, $\tilde{F} = F_{\tilde{B}}$.

In the general case, $P_n \to \tilde{F}$, and the asymptotic model is \tilde{F} . Parametric if $P_n \to F_{\tilde{A}}$.

In parametric models $F_{\theta}(x)$, under exchangeability, $\tilde{\theta}$ typically is the limit of a predictive sufficient statistic, which inspires the specification

$$P_n(x_{n+1} \mid X_1; \dots, X_n) = F(x_{n+1} \mid T_n(X_1, \dots, X_n)) \equiv F_{T_n}(x_{n+1}),$$

where T_n is computed recursively as a function of T_{n-1} and x_n ; in particular,

$$T_n = T_{n-1} + \alpha_n h(T_{n-1}, X_n).$$

Under conditions, $T_n \to \tilde{\theta}$ and $P_n = F_{T_n} \to F_{\tilde{\theta}}$. Thus, asymptotically,

$$X_n \mid \tilde{\theta} \stackrel{d}{\approx} F_{\tilde{\theta}}$$
 where $\tilde{\theta} = \lim T_n$ has an implicit prior law.

In the examples, the model $\tilde{F} = \lim P_n$ implied by the algorithm (the predictive rule) is semi-parametric (in the mixture example, $\tilde{F} = F_{\tilde{G}} = \int K(\cdot \mid \theta d\, \tilde{G}(\theta))$, the parameter is \tilde{G}), or parametric, $\tilde{F} = F_{\tilde{B}}$.

In the general case, $P_n \to \tilde{F}$, and the asymptotic model is \tilde{F} . Parametric if $P_n \to F_{\tilde{A}}$.

In parametric models $F_{\theta}(x)$, under exchangeability, $\tilde{\theta}$ typically is the limit of a predictive sufficient statistic, which inspires the specification

$$P_n(x_{n+1} \mid X_1; \dots, X_n) = F(x_{n+1} \mid T_n(X_1, \dots, X_n)) \equiv F_{T_n}(x_{n+1}),$$

where T_n is computed recursively as a function of T_{n-1} and x_n ; in particular,

$$T_n = T_{n-1} + \alpha_n h(T_{n-1}, X_n).$$

Under conditions, $T_n \to \tilde{\theta}$ and $P_n = F_{T_n} \to F_{\tilde{\theta}}$. Thus, asymptotically,

$$X_n \mid \tilde{\theta} \stackrel{d}{\approx} F_{\tilde{\theta}}$$
 where $\tilde{\theta} = \lim T_n$ has an implicit prior law.

* This is related to the *plug-in predictive* (Walker, 2022; see Fong & Yiu, 2024+) where $T_n = \hat{\theta}_n$, e.g. MLE.

How can we assign a convergent predictive rule?

How can we get a link to parametric models?

How can we approximate inference, not having the (explicit) prior?

posterior approximation

The prior remains implicit. How can we approximate the posterior distribution?

- Sample from it! predictive Monte Carlo, or predictive resampling, (Fortini & P., JRSS, 2020; Fong, Holmes & Walker, JRSS, B, 2023).
- Gaussian asymptotic approximations of the posterior distribution of θ , in parametric cases; or of the posterior distribution of F(t), for a fixed t or on a grid, or of the entire process \tilde{F} , in the general case.

The latter are not BvM results; rather refine Doob's theorem ("Doob-BvM").

Suppose $P_n \to \tilde{F}$, and interest is in inference on F(t), or in a functional $\tilde{\theta} = \theta(\tilde{F})$, e.g. $\int x d\tilde{F}(x)$.

We can design a *predictive Monte Carlo*, or *predictive resampling* algorithm to sample from their prior and posterior distributions.³

³Fortini & P., *JRSS*, *B*, (2020); Fong, Holmes, Walker, *JRSS*, *B*, (2023) ← ■ → ○ ○ ○

Suppose $P_n \to \tilde{F}$, and interest is in inference on F(t), or in a functional $\tilde{\theta} = \theta(\tilde{F})$, e.g. $\int x d\tilde{F}(x)$.

We can design a *predictive Monte Carlo*, or *predictive resampling* algorithm to sample from their prior and posterior distributions.³ **Sampling from the posterior**

- Given data $x_{1:n}$, use the predictive rule to generate $(x_{n+1}, x_{n+2}, ...)$ truncated at a large $N: \gcd x_{1:N}$.

Suppose $P_n \to \tilde{F}$, and interest is in inference on F(t), or in a functional $\tilde{\theta} = \theta(\tilde{F})$, e.g. $\int x d\tilde{F}(x)$.

We can design a *predictive Monte Carlo*, or *predictive resampling* algorithm to sample from their prior and posterior distributions.³ **Sampling from the posterior**

- Given data $x_{1:n}$, use the predictive rule to generate $(x_{n+1}, x_{n+2}, ...)$ truncated at a large N: get $x_{1:N}$.
- Compute the empirical $\hat{F}_N(t) = \sum_{i=1}^N \delta_{x_i}(t)$, or the pred $P_N(t \mid x_{1:N})$. Because $P_n \to \tilde{F}$, and N is large, $P_N(t)$ approximates $\tilde{F}(t)$, a sample from the posterior of $\tilde{F}(t)$.

³Fortini & P., *JRSS*, *B*, (2020); Fong, Holmes, Walker, *JRSS*, *B*, (2023) (≥ > ≥ ∞ < 0.000)

Suppose $P_n \to \tilde{F}$, and interest is in inference on F(t), or in a functional $\tilde{\theta} = \theta(\tilde{F})$, e.g. $\int x d\tilde{F}(x)$.

We can design a *predictive Monte Carlo*, or *predictive resampling* algorithm to sample from their prior and posterior distributions.³ **Sampling from the posterior**

- Given data $x_{1:n}$, use the predictive rule to generate $(x_{n+1}, x_{n+2}, ...)$ truncated at a large N: get $x_{1:N}$.
- Compute the empirical $\hat{F}_N(t) = \sum_{i=1}^N \delta_{x_i}(t)$, or the pred $P_N(t \mid x_{1:N})$. Because $P_n \to \tilde{F}$, and N is large, $P_N(t)$ approximates $\tilde{F}(t)$, a sample from the posterior of $\tilde{F}(t)$.
- Repeat M times: (approx) Monte Carlo sample of size M from the posterior.

Suppose $P_n \to \tilde{F}$, and interest is in inference on F(t), or in a functional $\tilde{\theta} = \theta(\tilde{F})$, e.g. $\int x d\tilde{F}(x)$.

We can design a *predictive Monte Carlo*, or *predictive resampling* algorithm to sample from their prior and posterior distributions.³ Sampling from the posterior

- Given data $x_{1:n}$, use the predictive rule to generate $(x_{n+1}, x_{n+2}, ...)$ truncated at a large $N: \gcd x_{1:N}$.
- Compute the empirical $\hat{F}_N(t) = \sum_{i=1}^N \delta_{x_i}(t)$, or the pred $P_N(t \mid x_{1:N})$. Because $P_n \to \tilde{F}$, and N is large, $P_N(t)$ approximates $\tilde{F}(t)$, a sample from the posterior of $\tilde{F}(t)$.
- Repeat M times: (approx) Monte Carlo sample of size M from the posterior.
- If interest in $\tilde{\theta} = \theta(\tilde{F})$: compute the empirical $\theta(\hat{F}_N)$ at each iteration, to get an approx Monte Carlo sample from the posterior dist. of $\tilde{\theta}$.

If n = 0: sampling from the prior

³Fortini & P., *JRSS*, *B*, (2020); Fong, Holmes, Walker, *JRSS*, *B*, (2023) ⋅ ₹ → ₹ ∞ ...

Predictive Monte Carlo does not require MCMC! But also interesting to have analytic approximations – in some cases, better! e.g., in the logistic regression ex: we should sample pairs (X_n, Y_n) but do not have P_X .

Predictive Monte Carlo does not require MCMC! But also interesting to have analytic approximations – in some cases, better! e.g., in the logistic regression ex: we should sample pairs (X_n, Y_n) but do not have P_X .

Let's consider the general case, $P_n \to \tilde{F}$ thus for n large

$$X_n \mid \tilde{F} \stackrel{iid}{\approx} \tilde{F}$$
.

Here I only consider the case where $(P_n)_{n\geq 0}$ is a martingale. Interest in the **posterior distribution of** $\tilde{F}(t)$ **at a fixed** t.

Predictive Monte Carlo does not require MCMC! But also interesting to have analytic approximations – in some cases, better! e.g., in the logistic regression ex: we should sample pairs (X_n, Y_n) but do not have P_X .

Let's consider the general case, $P_n \to \tilde{F}$ thus for n large

$$X_n \mid \tilde{F} \stackrel{iid}{\approx} \tilde{F}$$
.

Here I only consider the case where $(P_n)_{n\geq 0}$ is a martingale. Interest in the **posterior distribution of** $\tilde{F}(t)$ **at a fixed** t.

Remember that $\tilde{F} = \lim P_n$. Given data $x_{1:n}$, we are uncertain about the limit \tilde{F} of P_n . uncertainty formalized in the posterior distribution of \tilde{F} is such an uncertainty, 'due to the missing obs", and depends on the behavior of P_n .

Intuitively, if $P_n \to \tilde{F}$ at a fast rate, then for finite n we will be fairly sure about its limit, reflected in a small posterior variance.

Predictive Monte Carlo does not require MCMC! But also interesting to have analytic approximations – in some cases, better! e.g., in the logistic regression ex: we should sample pairs (X_n, Y_n) but do not have P_X .

Let's consider the general case, $P_n \to \tilde{F}$ thus for n large

$$X_n \mid \tilde{F} \stackrel{iid}{\approx} \tilde{F}$$
.

Here I only consider the case where $(P_n)_{n\geq 0}$ is a martingale. Interest in the **posterior distribution of** $\tilde{F}(t)$ **at a fixed** t.

Remember that $\tilde{F} = \lim P_n$. Given data $x_{1:n}$, we are uncertain about the limit \tilde{F} of P_n . uncertainty formalized in the posterior distribution of \tilde{F} is such an uncertainty, 'due to the missing obs", and depends on the behavior of P_n .

Intuitively, if $P_n \to \tilde{F}$ at a fast rate, then for finite n we will be fairly sure about its limit, reflected in a small posterior variance.

From the predictive to the posterior distr.

Consider the predictive updates

$$\Delta_{t,n} = P_n(t) - P_{n-1}(t),$$

how the predictive distribution at t varies in response to the new observation x_n . Let

$$V_{t,n} = \frac{1}{n} \sum_{k=1}^{n} k^2 \Delta_{t,k}^2.$$

Thrm⁴ Under regularity conditions,

$$\tilde{F}(t) \mid x_{1:n} \approx \mathcal{N}(P_n(t), \frac{V_{n,t}(x_{1:n})}{n})$$

for \mathbb{P} -almost all $\omega = (x_1, x_2, \ldots)$.

The approximation is centered on $P_n(t) = E(\tilde{F}(t) \mid x_{1:n})$.

The asymptotic variance depends on the way the predictive distribution learns from the data.

⁴Fortini & P., Phil. Trans. Roy. Soc., 2023; Fortini & P., Statistical Science, 2025

Predictive efficiency?

We can obtain asymptotic credible intervals for $\tilde{F}(t)$ given $x_{1:n}$

$$\left[P_n(t)-z_{1-\alpha/2}\sqrt{\frac{V_{t,n}}{n}},P_n(t)+z_{1-\alpha/2}\sqrt{\frac{V_{t,n}}{n}}\right]$$

The size of the credible interval depends on the **convergence rate** of P_n .

Predictive efficiency?

We can obtain asymptotic credible intervals for $\tilde{F}(t)$ given $x_{1:n}$

$$\left[P_n(t)-z_{1-\alpha/2}\sqrt{\frac{V_{t,n}}{n}},P_n(t)+z_{1-\alpha/2}\sqrt{\frac{V_{t,n}}{n}}\right]$$

The size of the credible interval depends on the **convergence rate** of P_n .

Yet, is P_n "learning well? is it "efficient"?

It has to balance a convergence rate with a proper learning rate (Ex, if $P_n = P_0$ for any n, it converges immediately, but does not learn from the data!)

example

Example: $\tilde{F} \sim DP(\alpha P_0)$; then

$$P_n(t) = \frac{\alpha}{\alpha + n} P_0(t) + \frac{1}{\alpha + n} \sum_{i=1}^n \delta_{x_i}(t)$$

Example: $\tilde{F} \sim DP(\alpha P_0)$; then

$$P_n(t) = \frac{\alpha}{\alpha + n} P_0(t) + \frac{1}{\alpha + n} \sum_{i=1}^n \delta_{x_i}(t) = P_{n-1}(t) + \frac{1}{\alpha + n} (\delta_{x_n}(t) - P_{n-1}(t)),$$

and

$$\Delta_{t,n}(t) = \frac{1}{\alpha + n} [\delta_{x_n}(t) - P_{n-1}(t)]$$

depends on α : if α large, $\Delta_{t,n}$ is small: given $x_{1:n-1}$, we do not learn much from the new observation x_n in predicting x_{n+1}

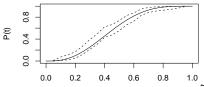
Example: $\tilde{F} \sim DP(\alpha P_0)$; then

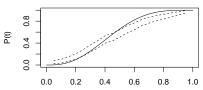
$$P_n(t) = \frac{\alpha}{\alpha + n} P_0(t) + \frac{1}{\alpha + n} \sum_{i=1}^n \delta_{x_i}(t) = P_{n-1}(t) + \frac{1}{\alpha + n} (\delta_{x_n}(t) - P_{n-1}(t)),$$

and

$$\Delta_{t,n}(t) = \frac{1}{\alpha + n} [\delta_{x_n}(t) - P_{n-1}(t)]$$

depends on α : if α large, $\Delta_{t,n}$ is small: given $x_{1:n-1}$, we do not learn much from the new observation x_n in predicting x_{n+1}





Marginal 0.95 credible intervals for $\tilde{F}(t)$ for t on a grid: $\alpha = 1$ (left panel) and $\alpha = 100$ (right). Solid curve: True F.

Predictive inferential-efficiency?

This calls for a notion of predictive efficiency..

In frequentist stats: inferential efficiency: (asymptotic) variance of unbiased efficient estimators in terms of Fisher information..

Is there a notion of efficiency in Bayesian Stats?

- rather, loss function and optimality..
- scoring rules, calibration..
- Here: IF the X_i are indeed iid from F_{true} , is the predictive rule able to learn that, "efficiently"? giving good frequentist coverage of the implied credible intervals?

Predictive inferential-efficiency?

This calls for a notion of predictive efficiency..

In frequentist stats: inferential efficiency: (asymptotic) variance of unbiased efficient estimators in terms of Fisher information..

Is there a notion of efficiency in Bayesian Stats?

- rather, loss function and optimality..
- scoring rules, calibration..
- Here: IF the X_i are indeed iid from F_{true} , is the predictive rule able to learn that, "efficiently"? giving good frequentist coverage of the implied credible intervals?

The latter is usually studied through BvM results. Ours are not BvM results: they hold with prob one, moreover the asymptotic variance is expressed in terms of the predictive updates, not of Fisher information.

Yet, in a predictive approach, they may suggest conditions on the predictive rule – on its *learning rate* – that ensure *inferential efficiency* and good frequentist coverage.

Some preliminary results

Consider the 'parametric predictive' rule

$$P_n(x_{n+1} \mid X_1; \dots, X_n) = F(x_{n+1} \mid T_n(1, \dots, X_n)) \equiv F_{T_n}(x_{n+1}, \dots, X_n)$$

with

$$T_n = T_{n-1} + \alpha_n h(T_{n-1}, X_n)$$

Under conditions, $T_n \to \tilde{\theta}$ and $P_n = F_{T_n} \to F_{\tilde{\theta}}$, thus, asymptotically, $X_n \mid \tilde{\theta} \stackrel{iid}{\approx} F_{\tilde{\theta}}$ where $\tilde{\theta} = \lim T_n$, and has an implicit prior.

Some preliminary results

Consider the 'parametric predictive' rule

$$P_n(x_{n+1} \mid X_1; \dots, X_n) = F(x_{n+1} \mid T_n(1, \dots, X_n)) \equiv F_{T_n}(x_{n+1}, \dots, X_n)$$

with

$$T_n = T_{n-1} + \alpha_n h(T_{n-1}, X_n)$$

Under conditions, $T_n \to \tilde{\theta}$ and $P_n = F_{T_n} \to F_{\tilde{\theta}}$, thus, asymptotically, $X_n \mid \tilde{\theta} \stackrel{iid}{\approx} F_{\tilde{\theta}}$ where $\tilde{\theta} = \lim T_n$, and has an implicit prior.

Conditions on the updating:

- * α_n positive decreasing with $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{k \geq n} \alpha_k^2 < \infty$, and
- * h satisfies $E(h(\theta,X))=0$ and $E(h_j(\theta,X)^2)<\infty$ where $X\sim F_{\theta}$.

Then $(T_n)_{n\geq 0}$ is a uniformly integrable martingale converging to $\tilde{\theta}$.

posterior distribution of $ilde{ heta}$

By the a.s. conditional CLT for martingales⁵, we can show that, for \mathbb{P} -almost all (x_1, x_2, \ldots) ,

$$\sqrt{b_n}(\tilde{\theta}-T_n)\mid x_{1:n} \to \mathcal{N}(0,U_{\tilde{\theta}(x_{1:\infty})})$$

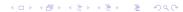
where $b_n = (\sum_{k \ge n} \alpha_k^2)^{-1}$ and

$$U_{\tilde{\theta}} = \lim E(h(T_n, X_n)h(T_n, X_n)^T \mid X_1, \dots, X_{n-1})$$

=
$$Var(h(\tilde{\theta}, X) \mid \tilde{\theta})$$

Thus, for n large,

$$\tilde{\theta} \mid x_{1:n} \approx \mathcal{N}(T_n, \frac{U_{\tilde{\theta}}}{h_n}),$$



Thus, for *n* large,

$$\tilde{\theta} \mid x_{1:n} \approx \mathcal{N}(T_n, \frac{U_{\tilde{\theta}}}{b_n}).$$

- * The rate, $b_n^{-1} = \sum_{k \geq n} \alpha_k^2$, is generally slower than 1/n, unless $\alpha_n \sim 1/n$.
- * The asymptotic posterior variance $U_{\theta} = \lim E(h(T_n, X_n)h(T_n, X_n)^T \mid X_1, \dots, X_{n-1})$, that again depends on the predictive updates, correspond to the inverse of Fisher information $I_n(\theta)$ for the model p_{θ} if the 'loss' h is suitably chosen.

Thus, for *n* large,

$$\tilde{\theta} \mid x_{1:n} \approx \mathcal{N}(T_n, \frac{U_{\tilde{\theta}}}{b_n}).$$

- * The rate, $b_n^{-1} = \sum_{k \geq n} \alpha_k^2$, is generally slower than 1/n, unless $\alpha_n \sim 1/n$.
- * The asymptotic posterior variance $U_{\theta} = \lim E(h(T_n, X_n)h(T_n, X_n)^T \mid X_1, \dots, X_{n-1})$, that again depends on the predictive updates, correspond to the inverse of Fisher information $I_n(\theta)$ for the model p_{θ} if the 'loss' h is suitably chosen.
- ightarrow An idea for such a "predictive inferential-efficiency" is to use score-adjusted predictive rules with

$$T_n = T_{n-1} + \alpha_n I(T_{n-1})^{-1} s(T_{n-1}, x_n)$$

where $s(\theta,X) = \partial log p_{\theta}(x)/\partial \theta$ is the score function, (elaborating from Walker (2022), Holmes & Walker (2023), Wang & Holmes (2024); Fong & Yiu (2024+).

E.g., this suggests to improve the online gradient descent updating in the logistic example by including $I(T_{n-1})^{-1}$.

Frequentist coverage?

Again, the asymptotic approximations still hold if the random variance $U_{\tilde{\theta}}$ is replaced by 'an estimate' (e.g. $U_{\mathcal{T}_n}$) that converges to $U_{\tilde{\theta}}$, allowing to obtain predictive-based asymptotic credible intervals for $\tilde{\theta}$ – -+ that would have good frequentist coverage (very informally: "for almost all θ ")

...BUT not BvM yet; rather "Doob-BvM", with conditions on the predictive updates (some recent results by Fong & Yiu, 2024+, and by Fortini & P. - ongoing)

Multivariate extensions

For short, the previous results were shown for the univariate case. For martingale predictive rules $P_n \to \tilde{F}$, so that

$$X_i \mid \tilde{F} \stackrel{iid}{\approx} \tilde{F}$$
 for n large.

we can approximate the posterior distribution of $\tilde{F}(t)$ for a fixed t

 \rightarrow The results extend to the posterior distribution of $\tilde{F}(t)$ for t on a grid, and to the entire distribution \tilde{F} .

The latter may allow to approximate the posterior distribution of functionals of \tilde{F} (e.g., $\mu = \int x d\tilde{F}(x)$, quantiles $\tilde{F}^{-1}(p)$, ...)

predictive inference on $[\tilde{F}(t_1), \ldots, \tilde{F}(t_k)]$

Consider a grid $t_{1:k}$ with $\mathbb{P}(X_1 \in \{t_1, \dots, t_k\}) = 0$, and the column vector of predictive updates $\mathbf{\Delta}_n = [\Delta_{t_1,n}, \dots, \Delta_{t_k,n}]^T$.

Proposition

If there is a sequence $(\alpha)_n$ with $\alpha_n > 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $\sum_{k \geq n} \alpha_k^2 < \infty$ such that

- $E(\sup_n \alpha_n^{-1/2} \mid \Delta_{t_j,n}|) < \infty$
- $\sum_{n=1}^{\infty} \alpha_n^{-2} E(\Delta_{t_j,n}^4) < \infty, j = 1, \dots, k$
- $E(\alpha_n^{-2} \Delta_{\mathbf{t},n} \Delta_{\mathbf{t},n}^T \mid X_1, \dots, X_{n-1}) \to \tilde{\mathbf{U}}_{t_{1:k}}, \mathbb{P}$ -a.s., for a positive definite random matrix $\tilde{\mathbf{U}}_{t_{1:k}}$,

then, \mathbb{P} -a.s.

$$\sqrt{b_n} \begin{bmatrix} \tilde{F}(t_1) - P_n(t_1) \\ \vdots \\ \tilde{F}(t_k) - P_n(t_k) \end{bmatrix} | X_1, \dots, X_n \stackrel{d}{\to} \mathcal{N}_k(0, \tilde{\mathbf{U}}_{t_{1:k}})$$

where
$$b_n = (\sum_{k \geq n} \alpha_k^2)^{-1}$$
.

inference on \tilde{F}

Theorem

Suppose the same conditions hold for any (t_1, \ldots, t_k) . If there exists n_0 and a non-decreasing random element \tilde{H} of D (space of cadlag functions, with Skorohod topology) such that for every $n \geq n_0$,

$$E(\alpha_n^{-2}(\Delta_{t,n}-\Delta_{s,n})^2\mid X_1,\dots,X_n)\leq \tilde{H}(t)-\tilde{H}(s)\quad \mathbb{P}\text{-a.s.}$$

for every s < t, then, \mathbb{P} -a.s.,

$$\sqrt{b_n} (P_n - \tilde{F}) \mid X_1, \dots, X_n \stackrel{d}{\to} \mathbb{G}(U),$$

where $b_n = (\sum_{k \geq n} \alpha_k^2)^{-1}$, and $\mathbb{G}(U)$ is a centered Gaussian process with kernel U satisfying $U(t_i, t_j) = \mathbf{U}_{(t_i, t_j)}[i, j]$. and $U(t, t) = \mathbf{U}_t$.

Time dependence

Breaking exchangeability, order matters. In the DP mixture example, Newton's algorithm – as a predictive rule – is implicitly assuming a time-dependent mixture model

$$X_i \mid \tilde{G}_n \stackrel{iid}{\sim} \int K(\cdot \mid \theta) d\tilde{G}_n(\theta)$$

with a specific temporal evolution of the random (G_n) ; in particular, $E(G_n(\cdot) = G_0(\cdot))$ and \tilde{G}_n converges to a random \tilde{G} ; (details in Fortini & P. *JRSS*, *B* 2020).

This may be an interesting model when one actually has time. In a static setting, it is an asymptotic approximation of an exchangeable mixture model with \tilde{G} constant – intuitively, the closer to it the 'more stable' the \tilde{G}_n are.

- * Again, the *learning coefficients* α_n have a crucial dual role in
- driving the rate of convergence of \tilde{G}_n to the limit \tilde{G} (we'd like it to be fast, to quickly reach exchangeability)
- driving the learning rate (we'd like to be fairly slow, to actually learn from the observations as they become available).
- * The role of the *loss function* is unexplored in this semi-parametric

Beyond random sampling

I have here considered the basic setting, random sampling – exchangeability.

Extensions to more elaborated sampling schemes and settings - e.g., fixed-design regression and partial exchangeability, and time series ...- are only partially developed.

A direction for extensions to partially exchangeable structures and possibly Markov chains is to move from the notion of *partially c.i.d.* arrays (Fortini, P. & Sporysheva, *Bernoulli*, 2016).

Final remarks & open problems

- We can take a Bayesian predictive approach to deal with (some classes of) recursive predictive algorithms
- Is the predictive rule implicitly using an inferential scheme?
 Then we can provide Bayesian uncertainty quantification (without the (explicit) prior!)
- Inferential properties depends on the capacity of the predictive distribution of learning from the data.
 - → "predictive efficiency"?
 - → Frequentist properties?
 - → More genuinely predictive criteria? Calibration and scoring rules?
- more on extensions beyond random sampling (asymptotic partial exchangeability, ...)
- •

Thank you for attending this lecture!

references

- Fortini, S. and Petrone, S. (2020) JRSS, B.
- Fortini, S. and Petrone, S. (2023) Prediction-based uncertainty quantification for exchangeable sequences. *Phil. Trans. Royal Soc.* A, 381:20220142.
- Fortini, S. and Petrone, S. (2025) Exchangeability, prediction and predictive modeling in Bayesian statistics. Statistical Science