

Bended discriminant analysis:

a Bayesian nonparametric approach to discriminant analysis

Bernardo Nipoti Università di Milano-Bicocca

Padova, SISBayes, 4/9/2025

- ▶ Joint project with Laura D'Angelo and Tommaso Rigon
- ▶ Preliminary results in this presentation

Discriminant analysis

- Classical approach to supervised classification
- Very popular thanks to its simplicity

Variants:

- Linear discriminant analysis (LDA) [Fisher, 1936]
- Quadratic discriminant analysis (QDA)
- ▶ Various generalizations [see EOSL, Hastie et al, 2009]

"Both LDA and QDA perform well on an amazingly large and diverse set of classification tasks. [...] It seems that whatever exotic tools are the rage of the day, we should always have available these two simple tools." [Hastie et al, 2009]

Setup and notation

▶ Data: $(\mathbf{x}, \mathbf{y}) = \{(x_i, y_i) : i = 1, ..., n\}$, where: predictors: $x_i \in \mathbb{R}^d$ categorical response: $y_i \in \mathcal{G} = \{1, ..., G\}$

Assumption on the distribution of the predictors x_i :

$$x_i \mid y_i = g, \mu, \Sigma \stackrel{\mathsf{ind}}{\sim} \mathsf{N}_d(\mu_g, \Sigma_g),$$
 where $\mu = (\mu_1, \dots, \mu_G)$ and $\Sigma = (\Sigma_1, \dots, \Sigma_G)$

▶ Bayes classifier: given a predictor x_* , a prediction $\hat{y}(x_*)$ is made based on the posterior probability of the response y_* :

$$\hat{y}(x_*) = \operatorname*{argmax} \Pr(y_* = g \mid x_*)$$

Discriminant functions

$$Pr(y_* = g \mid x_*) \overset{\text{Bayes}}{\propto} Pr(y_* = g) p(x_* \mid y_* = g)$$
$$= \pi_g f_{N_d}(x_*; \mu_g, \Sigma_g)$$

 π_g : prior probability for category g

 f_{N_d} : pdf of a *d*-dimensional normal

• E.g., two categories (g_1, g_2) with $\pi_1 = \pi_2$: $\hat{y}(x_*) = g_1$ if

$$\log \Pr(y_* = g_1 \mid x_*) > \log \Pr(y_* = g_2 \mid x_*)$$

- The assumption of normality of the predictors leads to a discriminant inequality *quadratic* in x_* (QDA)
- Further assuming that $\Sigma_g = \Sigma$ for every $g \in \mathcal{G}$ leads to a discriminant inequality *linear* in x_* (LDA)

Parameters

The discriminant inequalities involve parameters to be estimated:

LDA:
$$\pi = (\pi_1, ..., \pi_G)$$
, $\mu = (\mu_1, ..., \mu_G)$, Σ
QDA: $\pi = (\pi_1, ..., \pi_G)$, $\mu = (\mu_1, ..., \mu_G)$, $\Sigma = (\Sigma_1, ..., \Sigma_G)$

Approach is flexible in the choice of the estimation method:

- Maximum likelihood estimators
- Bayesian posterior estimators
- Other estimators, depending on the focus

LDA, QDA or other variants?

- QDA makes less assumptions than LDA but requires estimating a larger number of parameters
- ▶ Issue when the class-specific sizes n_g are small and d is large

Compromises studied in the literature, e.g.:

► Regularized discriminant analysis (RDA) [Friedman, 1989]

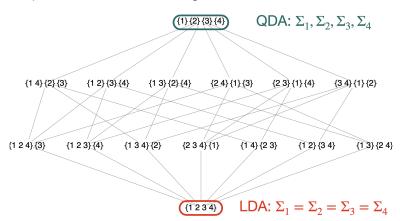
$$\hat{\Sigma}_{g}(\alpha) = \alpha \hat{\Sigma}_{g} + (1 - \alpha)\hat{\Sigma}$$

 $\hat{\Sigma}_g(\alpha)$ combines the assumptions of LDA and QDA

We instead explore methods that lie in between LDA and QDA

Between LDA and QDA

Example with G = 4. Hasse diagram:



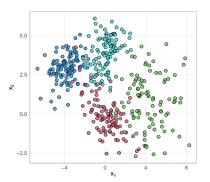
▶ LDA and QDA extreme cases of a rich collection of models

Bended discriminant analysis

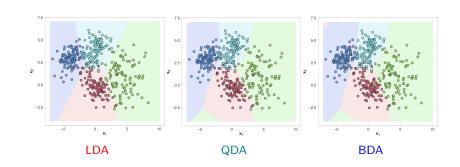
- \triangleright Problem of selecting among B_G (Bell number) models
- ▶ $B_G = 15$ when G = 4 as in the example
- $\begin{array}{l} \blacktriangleright \ \{\mathsf{models}\} \longleftrightarrow \{\mathsf{partitions} \ \mathsf{of} \ \mathcal{G} = \{1,\ldots,G\}\} \\ \\ e.g. \ \{1,2\}, \{3,4\} \ \mathsf{corresponds} \ \mathsf{to} \ \mathsf{model} \ \Sigma_1 = \Sigma_2, \ \Sigma_3 = \Sigma_4 \end{array}$
- Idea: assigning positive prior probability to all possible partitions of G
- Our proposal: bended discriminant analysis (BDA)
- ► LDA and QDA are special cases of BDA

Toy example with G = 4 classes

- ightharpoonup Simulate $n_g=100$ points per class from a normal distribution
- Means: $\mu_1 = (0,0)$, $\mu_2 = (4,1)$, $\mu_3 = (-4,3)$, $\mu_4 = (0,4)$
- ▶ Covariances: Σ_1 , Σ_2 , $\Sigma_3 = \Sigma_4$ (*i.e.* $\{1\}, \{2\}, \{3, 4\}$)



Toy example: classification regions

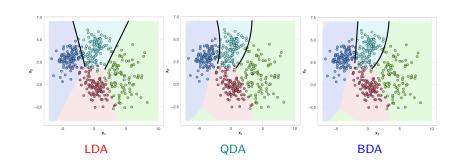


LDA:
$$\Sigma_1 = \Sigma_2 = \Sigma_3 = \Sigma_4$$

QDA: Σ_1 , Σ_2 , Σ_3 , Σ_4

BDA: selected model: $\{1\},\{2\},\{3,4\}$, i.e. Σ_1 , Σ_2 , $\Sigma_3=\Sigma_4$

Toy example: classification regions



LDA:
$$\Sigma_1 = \Sigma_2 = \Sigma_3 = \Sigma_4$$

QDA: Σ_1 , Σ_2 , Σ_3 , Σ_4

BDA: selected model: $\{1\},\{2\},\{3,4\}$, i.e. Σ_1 , Σ_2 , $\Sigma_3=\Sigma_4$

Latent partition model

- lacksquare BDA exploits a latent partition model over $\mathcal{G} = \{1, \dots, G\}$
- A random partition $\mathcal S$ of $\mathcal G$ is implied by a nonparametric mixture with only $\{\Sigma_1,\dots,\Sigma_G\}$ modeled nonparametrically

Hierarchical model on $\{(\mu_g, \Sigma_g) : g = 1, \dots, G\}$:

$$\begin{split} \mu_{\mathbf{g}} \mid \Sigma_{\mathbf{g}} & \stackrel{\mathsf{ind}}{\sim} \mathsf{N}_{d} \left(\mu_{0,\mathbf{g}}, \frac{\Sigma_{\mathbf{g}}}{\tau_{0,\mathbf{g}}} \right) \\ \Sigma_{\mathbf{g}} \mid P & \stackrel{\mathsf{iid}}{\sim} P \\ P & \sim Q \end{split}$$

- Q: distribution of discrete nonparametric random measure (e.g. DP, Gibbs) on the space of positive-definite matrices
- ▶ Inverse-Wishart(Λ_0, ν_0) as base measure of Q

Complete Bayesian model for BDA

$$\Pr(y_* = g \mid x_*) \propto \pi_g f_{N_d}(x_*; \mu_g, \Sigma_g)$$

We define a Bayesian model with two components:

- 1. Scale-only mixture model for $\{(\mu_g, \Sigma_g) : g = 1, \dots, G\}$
- 2. Prior for prior probabilities

$$(\pi_1,\ldots,\pi_G)\sim \mathsf{Dirichlet}(\beta_1,\ldots,\beta_G)$$

Recall: the EPPF of a Gibbs-type prior Q [De Blasi et al., 2013] with $\sigma \leq 1$ and weights $\{V_{n,k} : n \geq 1, 1 \leq k \leq n\}$ is given by

$$p(\mathcal{S}) = \prod_{k}^{(G)}(\tilde{n}_1, \dots, \tilde{n}_k) = V_{n,k} \prod_{j=1}^{k} (1 - \sigma)_{\tilde{n}_j - 1}$$

with $\mathcal S$ partition of $\mathcal G=\{1,\ldots,G\}$ with k blocks of size $\tilde n_1,\ldots,\tilde n_k$

Posterior over the space of partitions (I)

Key for model selection is the posterior distribution of \mathcal{S} :

$$p(\mathcal{S} \mid \boldsymbol{x}, \boldsymbol{y}) \propto V_{n,k} \frac{|\Lambda_0|^{k\nu_0/2}}{\Gamma_d(\nu_0/2)^k} \prod_{j=1}^k \left\{ (1-\sigma)_{\tilde{n}_j-1} \frac{\Gamma_d(\nu_{n,j}/2)}{|\Lambda_{n,j}|^{\nu_{n,j}/2}} \right\},$$

obtained after marginalizing with respect to parameters μ and Σ

- ▶ In classification problems, G is typically of moderate size
- $ightharpoonup p(S \mid x, y)$ can be evaluated over the whole space of models

How many evaluations?

G	2	3	4	5	6	7	8	9	10
BG	2	5	15	52	203	877	4140	21147	115975

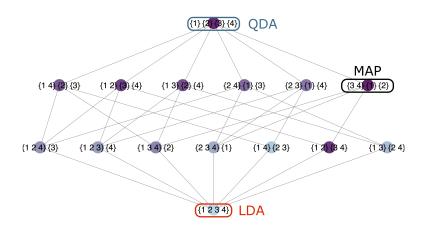
Posterior over the space of partitions (II)

The evaluation of $p(S \mid x, y)$ allows us to:

- ► Compute the normalizing costant
- ▶ Identify the MAP \hat{S}
- ► Identify a set of likely partitions/models [Wade & Ghahramani, 2018; Balocchi & Wade, 2025]
- ► Sample exactly from $p(S \mid x, y)$
- ▶ Evaluate functionals of interest, *e.g.* the posterior distribution of the number of blocks |S|:

$$\Pr(|\mathcal{S}| = k \mid \boldsymbol{X}, \boldsymbol{y}) \propto V_{n,k} \frac{|\Lambda_0|^{k\nu_0/2}}{\Gamma_d(\nu_0/2)^k} \sum_{\mathcal{S}: |\mathcal{S}| = k} \left\{ \prod_{j=1}^k (1 - \sigma)_{\tilde{n}_j - 1} \frac{\Gamma_d(\nu_{n,j}/2)}{|\Lambda_{n,j}|^{\nu_{n,j}/2}} \right\}$$

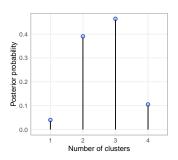
Back to toy example with G = 4 classes



purple: high posterior; light blue: low posterior.

Toy example: posterior inference on ${\mathcal S}$

- ► MAP: $\hat{S} = \{\{1\}, \{2\}, \{3, 4\}\}$
- **Posterior** distribution of number of blocks in S:



Classification via conditional posterior predictive

We want to classify a new statistical unit with predictors x_* :

▶ Conditionally on an estimated partition/model \hat{S} :

$$\Pr(y_* = g \mid x_*, \boldsymbol{x}, \boldsymbol{y}, \hat{\mathcal{S}}) \propto \\ \propto \frac{\beta_g + n_g}{\sum_{h=1}^{G} (\beta_h + n_h)} t_{\nu_{n,j} - d + 1} \left(x_*; \ \mu_{j,n}, \frac{\Lambda_{n,j}(\tau_{n,g} + 1)}{\tau_{n,g}(\nu_{n,j} - d + 1)} \right)$$

Bayes classifier:

$$\hat{y}(x_*) = \underset{g \in \mathcal{G}}{\operatorname{argmax}} \Pr(y_* = g \mid x_*, \boldsymbol{x}, \boldsymbol{y}, \hat{\mathcal{S}})$$

Classification via marginal posterior predictive

We want to classify a new statistical unit with predictors x_* :

b By marginalizing with respect to S:

$$\Pr(y_* = g \mid x_*, X, y) = \sum_{\mathcal{S} \in \mathcal{P}_{\mathcal{G}}} \Pr(y_* = g \mid x_*, \boldsymbol{x}, \boldsymbol{y}, \mathcal{S}) p(\mathcal{S} \mid x_*, \boldsymbol{x}, \boldsymbol{y})$$

whose evaluation is possible but computationally intensive

▶ If *G* is not small, via Monte Carlo:

$$\mathbb{E}_{\mathcal{S}\mid x_*, \boldsymbol{x}, \boldsymbol{y}}[\mathsf{Pr}(y_* = g \mid x_*, \boldsymbol{x}, \boldsymbol{y}, \mathcal{S})]$$

Bayes classifier:

$$\hat{y}(x_*) = \operatorname*{argmax}_{g \in \mathcal{G}} \mathbb{E}_{\mathcal{S}|x_*, \boldsymbol{x}, \boldsymbol{y}}[\mathsf{Pr}(y_* = g \mid x_*, \boldsymbol{x}, \boldsymbol{y}, \mathcal{S})]$$

Simulation experiment

Synthetic data:

- ▶ $d \in \{10, 50\}$
- ► G = 7, with $n_g \in \{20, 40, 60\}$
- $\mathcal{S} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7\}\}$

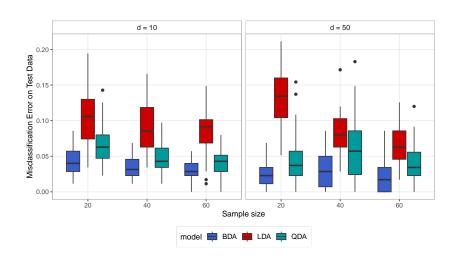
i.e.
$$\Sigma_1=\Sigma_2=\Sigma_3;~\Sigma_4=\Sigma_5=\Sigma_6;~\Sigma_7$$

50 replicated datasets per scenario

Data analyzed with:

- ► LDA
- ▶ QDA
- ► BDA (via conditional posterior predictive)

Simulation experiment



What's next?

- lacktriangle Algorithmic approach to find the MAP $\hat{\mathcal{S}}$ when G>10
- BDA's performance on challenging scenarios
- Study the impact of the choice nonparametric prior for P
- ▶ Incorporate class-specific covariates by modeling P with a PPMx (product partition model with regression on covariates)

[Müller et al., 2011]

Comments and suggestions are welcome!

Some references

- Balocchi, C., & Wade, S. (2025). Understanding uncertainty in Bayesian cluster analysis. arXiv preprint.
- De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., & Ruggiero, M. (2013). Are Gibbs-type priors the most natural generalization of the Dirichlet process?. *IEEE transactions on pattern analysis and machine intelligence*.
- Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. *Annals of eugenics*.
- Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American statistical association.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning.
- Müller, P., Quintana, F., & Rosner, G. L. (2011). A product partition model with regression on covariates. *Journal of Computational and Graphical Statistics*.
- Wade, S., & Ghahramani, Z. (2018). Bayesian cluster analysis: Point estimation and credible balls. Bayesian Analysis.