DEGLI STUDI
g

&
&
=
Z
S
B

Bended discriminant analysis:

a Bayesian nonparametric approach to discriminant analysis

Bernardo Nipoti

Universita di Milano-Bicocca

Padova, SISBayes, 4/9/2025



» Joint project with Laura D'Angelo and Tommaso Rigon

» Preliminary results in this presentation




Discriminant analysis

» Classical approach to supervised classification

P Very popular thanks to its simplicity

Variants:

» Linear discriminant analysis (LDA) [Fisher, 1936]
» Quadratic discriminant analysis (QDA)

» Various generalizations [see EOSL, Hastie et al, 2009]

“Both LDA and QDA perform well on an amazingly large and
diverse set of classification tasks. [...] It seems that whatever
exotic tools are the rage of the day, we should always have
available these two simple tools.” [Hastie et al, 2009]



Setup and notation

» Data: (x,y) ={(x;,yi) : i=1,...,n}, where:
predictors: x; € RY

categorical response: y; € G ={1,...,G}
» Assumption on the distribution of the predictors x;:
ind
Xi ’ Yi = g’u72 ~ Nd(ugvzg)a
where g = (p1,...,p6) and L = (X4,...,X¢)

> Bayes classifier: given a predictor x,, a prediction y(xy) is
made based on the posterior probability of the response y;:

Y(x) = argmax Pr(y. = g | x.)
geg



Discriminant functions

Priys =g | x) "% Pr(y = g)p(x. | yo = &)
= mgfn, (X figs Lg)
mg: prior probability for category g
fny: pdf of a d-dimensional normal

» E.g., two categories (g1, g2) with m = m: J(x) = g1 if

log Pr(y. = g1 | x«) > log Pr(y. = g2 | x«)

» The assumption of normality of the predictors leads to a
discriminant inequality quadratic in x, (QDA)

» Further assuming that ¥, = X for every g € G leads to a
discriminant inequality /inear in x, (LDA)



Parameters

The discriminant inequalities involve parameters to be estimated:

LDA: = (71,...,7¢), b= (1,-.-,14G),
QDA: 71':(71'1,...,71'(;),u:(ul,...,/tc;), 2:(21,...,26)

Approach is flexible in the choice of the estimation method:

> Maximum likelihood estimators
» Bayesian posterior estimators

» Other estimators, depending on the focus



LDA, QDA or other variants?

» QDA makes less assumptions than LDA but requires
estimating a larger number of parameters

» Issue when the class-specific sizes ng are small and d is large

Compromises studied in the literature, e.g.:

» Regularized discriminant analysis (RDA) [Friedman, 1989]
Sga)=a¥, +(1-a)X

A

Y g () combines the assumptions of LDA and QDA

We instead explore methods that lie in between LDA and QDA



Between LDA and QDA

Example with G = 4. Hasse diagram:

QDA: 3,,%,,%,. 5,
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» LDA and QDA extreme cases of a rich collection of models



Bended discriminant analysis

» Problem of selecting among B¢ (Bell number) models
» Bc = 15 when G = 4 as in the example
» {models} <— {partitions of G = {1,...,G}}
e.g. {1,2},{3,4} corresponds to model X1 = ¥, ¥3 =13,

P Idea: assigning positive prior probability to all possible
partitions of G

» Our proposal: bended discriminant analysis (BDA)
» LDA and QDA are special cases of BDA



Toy example with G = 4 classes

» Simulate ng = 100 points per class from a normal distribution
> Means: H1 = (070)' H2 = (47 1)' u3 = (_47 3)' Ha = (074)
» Covariances: X1, X2, X3 = X4 (ie. {1},{2},{3,4})

-25



Toy example: classification regions

LDA: 21 = 22 = 23 = 24
QDAZ 21, Zg, 23, 24

BDA: selected model: {1},{2},{3,4}, i.e. X1, o, X3 =124



Toy example: classification regions

00

LDA: Y1 =3, =3¥3=124
QDA: X1, o, 23, X4
BDA: selected model: {1},{2},{3,4}, i.e. X1, o, X3 =124



Latent partition model

» BDA exploits a latent partition model over G = {1,...,G}

» A random partition S of G is implied by a nonparametric
mixture with only {¥1,..., %} modeled nonparametrically

Hierarchical model on {(yg,%z) : g =1,...,G}:

ind Y
fig | g = Ng uagvég>
T0,g

Y. PSP

P~Q

> @: distribution of discrete nonparametric random measure
(e.g. DP, Gibbs) on the space of positive-definite matrices

» Inverse-Wishart(/Ag, vp) as base measure of Q



Complete Bayesian model for BDA

Priyvs = g | x) o mgfn, (Xs; g, Lg)
We define a Bayesian model with two components:

1. Scale-only mixture model for {(pg,Xz) : g=1,...,G}

2. Prior for prior probabilities
(7T1, - ,7TG) ~ Dirichlet(ﬁl, - 75G)

Recall: the EPPF of a Gibbs-type prior Q [De Blasi et al., 2013]
with o <1 and weights {V,, x : n>1,1 < k < n} is given by

k
p(S) = nic)(ﬁh s k) = Vi H(l —0)fi-1
j=1

with S partition of G = {1,..., G} with k blocks of size fy, ..., fi



Posterior over the space of partitions (I)

Key for model selection is the posterior distribution of S:

[Nolko/2 [a(vnj/2)
L (]_ _ )~ _YN W T ,
A1 j

Y -
p(S | Xay) X Vn,k rd(VO/z) j—1 ‘An,j’l/"’jp

obtained after marginalizing with respect to parameters g and X

» In classification problems, G is typically of moderate size

» p(S | x,y) can be evaluated over the whole space of models

How many evaluations?

G 2 3 4 5 6 7 8 9 10
Ba 2 5 15 52 203 | 877 | 4140 |21147 115975




Posterior over the space of partitions (II)

The evaluation of p(S | x,y) allows us to:
» Compute the normalizing costant
> Identify the MAP &

» Identify a set of likely partitions/models
[Wade & Ghahramani, 2018; Balocchi & Wade, 2025]

» Sample exactly from p(S | x,y)

v

Evaluate functionals of interest, e.g. the posterior distribution
of the number of blocks |S|:

[Ag|*o/2 - a(n/2)
Pr(IS| =k | X,y) x V, l-0o)i17 7
(IS | ) Y Fa(vo/2) 5%: . H( )i-1 |/\n,j‘y"”/2

j=1



Back to toy example with G = 4 classes
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purple: high posterior; light blue: low posterior.



Toy example: posterior inference on &

> MAP: 8 = {{1},{2},{3,4}}

» Posterior distribution of number of blocks in S:

Posterior probability
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Classification via conditional posterior predictive

We want to classify a new statistical unit with predictors x:

» Conditionally on an estimated partition/model S:

PN

Pr(y* :g | X*7X7y78) o8

Bg + ng <
X =gty —di1 | Xei Hjmy
Sy (B ) "

An,j(Tn,g +1) >
Tng(Vnj—d+1)

» Bayes classifier:

.),}(X*) = argmax Pr(y* = g ‘ X*7x7y7SA)
geg



Classification via marginal posterior predictive

We want to classify a new statistical unit with predictors x,:

» By marginalizing with respect to S:

Pr(y*:g|x*,X,y): Z Pr(y* :g|X*aX7y78)p(S|X*7X7y)
SePg

whose evaluation is possible but computationally intensive
» If G is not small, via Monte Carlo:
ES\X*,x,y[Pr(Y* =8 ’ Xy X,y,S)]
» Bayes classifier:

y(x) = argmgaxEsm,x,y[Pr(y* =8 | x: x,y,5)]
ge



Simulation experiment

Synthetic data:
» d e {10,50}
> G =7, with ny € {20, 40,60}
> S =1{{1,2,3},{4,5,6},{7}}
ie. X1 =Yp =133, X4=235=2p; L7

» 50 replicated datasets per scenario

Data analyzed with:

> LDA
> QDA

» BDA (via conditional posterior predictive)



Simulation experiment
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What's next?

» Algorithmic approach to find the MAP S when G > 10
» BDA's performance on challenging scenarios
» Study the impact of the choice nonparametric prior for P

» Incorporate class-specific covariates by modeling P with a
PPMx (product partition model with regression on covariates)

[Miiller et al., 2011]

» Comments and suggestions are welcome!
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