
Bended discriminant analysis:

a Bayesian nonparametric approach to discriminant analysis

Bernardo Nipoti
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▶ Preliminary results in this presentation



Discriminant analysis

▶ Classical approach to supervised classification

▶ Very popular thanks to its simplicity

Variants:

▶ Linear discriminant analysis (LDA) [Fisher, 1936]

▶ Quadratic discriminant analysis (QDA)

▶ Various generalizations [see EOSL, Hastie et al, 2009]

“Both LDA and QDA perform well on an amazingly large and
diverse set of classification tasks. [...] It seems that whatever
exotic tools are the rage of the day, we should always have
available these two simple tools.” [Hastie et al, 2009]



Setup and notation

▶ Data: (x , y) = {(xi , yi ) : i = 1, . . . , n}, where:

predictors: xi ∈ Rd

categorical response: yi ∈ G = {1, . . . ,G}

▶ Assumption on the distribution of the predictors xi :

xi | yi = g ,µ,Σ
ind∼ Nd(µg ,Σg ),

where µ = (µ1, . . . , µG ) and Σ = (Σ1, . . . ,ΣG )

▶ Bayes classifier: given a predictor x∗, a prediction ŷ(x∗) is
made based on the posterior probability of the response y∗:

ŷ(x∗) = argmax
g∈G

Pr(y∗ = g | x∗)



Discriminant functions

Pr(y∗ = g | x∗)
Bayes
∝ Pr(y∗ = g)p(x∗ | y∗ = g)

= πg fNd
(x∗;µg ,Σg )

πg : prior probability for category g

fNd
: pdf of a d-dimensional normal

▶ E.g., two categories (g1, g2) with π1 = π2: ŷ(x∗) = g1 if

log Pr(y∗ = g1 | x∗) > log Pr(y∗ = g2 | x∗)

▶ The assumption of normality of the predictors leads to a
discriminant inequality quadratic in x∗ (QDA)

▶ Further assuming that Σg = Σ for every g ∈ G leads to a
discriminant inequality linear in x∗ (LDA)



Parameters

The discriminant inequalities involve parameters to be estimated:

LDA: π = (π1, . . . , πG ), µ = (µ1, . . . , µG ), Σ

QDA: π = (π1, . . . , πG ), µ = (µ1, . . . , µG ), Σ = (Σ1, . . . ,ΣG )

Approach is flexible in the choice of the estimation method:

▶ Maximum likelihood estimators

▶ Bayesian posterior estimators

▶ Other estimators, depending on the focus



LDA, QDA or other variants?

▶ QDA makes less assumptions than LDA but requires
estimating a larger number of parameters

▶ Issue when the class-specific sizes ng are small and d is large

Compromises studied in the literature, e.g.:

▶ Regularized discriminant analysis (RDA) [Friedman, 1989]

Σ̂g (α) = αΣ̂g + (1− α)Σ̂

Σ̂g (α) combines the assumptions of LDA and QDA

We instead explore methods that lie in between LDA and QDA



Between LDA and QDA

Example with G = 4. Hasse diagram:

▶ LDA and QDA extreme cases of a rich collection of models



Bended discriminant analysis

▶ Problem of selecting among BG (Bell number) models

▶ BG = 15 when G = 4 as in the example

▶ {models} ←→ {partitions of G = {1, . . . ,G}}

e.g. {1, 2}, {3, 4} corresponds to model Σ1 = Σ2, Σ3 = Σ4

▶ Idea: assigning positive prior probability to all possible
partitions of G

▶ Our proposal: bended discriminant analysis (BDA)

▶ LDA and QDA are special cases of BDA



Toy example with G = 4 classes

▶ Simulate ng = 100 points per class from a normal distribution

▶ Means: µ1 = (0, 0), µ2 = (4, 1), µ3 = (−4, 3), µ4 = (0, 4)

▶ Covariances: Σ1, Σ2, Σ3 = Σ4 (i.e. {1}, {2}, {3, 4})
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Toy example: classification regions

LDA QDA BDA

LDA: Σ1 = Σ2 = Σ3 = Σ4

QDA: Σ1, Σ2, Σ3, Σ4

BDA: selected model: {1}, {2}, {3, 4}, i.e. Σ1, Σ2, Σ3 = Σ4



Toy example: classification regions

LDA QDA BDA

LDA: Σ1 = Σ2 = Σ3 = Σ4

QDA: Σ1, Σ2, Σ3, Σ4

BDA: selected model: {1}, {2}, {3, 4}, i.e. Σ1, Σ2, Σ3 = Σ4



Latent partition model

▶ BDA exploits a latent partition model over G = {1, . . . ,G}
▶ A random partition S of G is implied by a nonparametric

mixture with only {Σ1, . . . ,ΣG} modeled nonparametrically

Hierarchical model on {(µg ,Σg ) : g = 1, . . . ,G}:

µg | Σg
ind∼ Nd

(
µ0,g ,

Σg

τ0,g

)
Σg | P

iid∼ P

P ∼ Q

▶ Q: distribution of discrete nonparametric random measure
(e.g. DP, Gibbs) on the space of positive-definite matrices

▶ Inverse-Wishart(Λ0, ν0) as base measure of Q



Complete Bayesian model for BDA

Pr(y∗ = g | x∗) ∝ πg fNd
(x∗;µg ,Σg )

We define a Bayesian model with two components:

1. Scale-only mixture model for {(µg ,Σg ) : g = 1, . . . ,G}

2. Prior for prior probabilities

(π1, . . . , πG ) ∼ Dirichlet(β1, . . . , βG )

Recall: the EPPF of a Gibbs-type prior Q [De Blasi et al., 2013]
with σ ≤ 1 and weights {Vn,k : n ≥ 1, 1 ≤ k ≤ n} is given by

p(S) = Π
(G)
k (ñ1, . . . , ñk) = Vn,k

k∏
j=1

(1− σ)ñj−1

with S partition of G = {1, . . . ,G} with k blocks of size ñ1, . . . , ñk



Posterior over the space of partitions (I)

Key for model selection is the posterior distribution of S:

p(S | x , y) ∝ Vn,k
|Λ0|kν0/2

Γd(ν0/2)k

k∏
j=1

{
(1− σ)ñj−1

Γd(νn,j/2)

|Λn,j |νn,j/2

}
,

obtained after marginalizing with respect to parameters µ and Σ

▶ In classification problems, G is typically of moderate size

▶ p(S | x , y) can be evaluated over the whole space of models

How many evaluations?



Posterior over the space of partitions (II)

The evaluation of p(S | x , y) allows us to:

▶ Compute the normalizing costant

▶ Identify the MAP Ŝ
▶ Identify a set of likely partitions/models

[Wade & Ghahramani, 2018; Balocchi & Wade, 2025]

▶ Sample exactly from p(S | x , y)
▶ Evaluate functionals of interest, e.g. the posterior distribution

of the number of blocks |S|:

Pr(|S| = k | X , y) ∝ Vn,k
|Λ0|kν0/2

Γd(ν0/2)k

∑
S:|S|=k


k∏

j=1

(1− σ)ñj−1
Γd(νn,j/2)

|Λn,j |νn,j/2





Back to toy example with G = 4 classes

purple: high posterior; light blue: low posterior.



Toy example: posterior inference on S

▶ MAP: Ŝ = {{1}, {2}, {3, 4}}

▶ Posterior distribution of number of blocks in S:
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Classification via conditional posterior predictive

We want to classify a new statistical unit with predictors x∗:

▶ Conditionally on an estimated partition/model Ŝ:

Pr(y∗ = g | x∗, x , y , Ŝ) ∝

∝ βg + ng∑G
h=1(βh + nh)

tνn,j−d+1

(
x∗; µj,n,

Λn,j(τn,g + 1)

τn,g (νn,j − d + 1)

)

▶ Bayes classifier:

ŷ(x∗) = argmax
g∈G

Pr(y∗ = g | x∗, x , y , Ŝ)



Classification via marginal posterior predictive

We want to classify a new statistical unit with predictors x∗:

▶ By marginalizing with respect to S:

Pr(y∗ = g | x∗,X , y) =
∑
S∈PG

Pr(y∗ = g | x∗, x , y ,S)p(S | x∗, x , y)

whose evaluation is possible but computationally intensive

▶ If G is not small, via Monte Carlo:

ES|x∗,x ,y [Pr(y∗ = g | x∗, x , y ,S)]

▶ Bayes classifier:

ŷ(x∗) = argmax
g∈G

ES|x∗,x ,y [Pr(y∗ = g | x∗, x , y ,S)]



Simulation experiment

Synthetic data:

▶ d ∈ {10, 50}
▶ G = 7, with ng ∈ {20, 40, 60}
▶ S = {{1, 2, 3}, {4, 5, 6}, {7}}

i.e. Σ1 = Σ2 = Σ3; Σ4 = Σ5 = Σ6; Σ7

▶ 50 replicated datasets per scenario

Data analyzed with:

▶ LDA

▶ QDA

▶ BDA (via conditional posterior predictive)



Simulation experiment
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What’s next?

▶ Algorithmic approach to find the MAP Ŝ when G > 10

▶ BDA’s performance on challenging scenarios

▶ Study the impact of the choice nonparametric prior for P

▶ Incorporate class-specific covariates by modeling P with a
PPMx (product partition model with regression on covariates)

[Müller et al., 2011]

▶ Comments and suggestions are welcome!
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