Evaluating Causal Effects on Time-to-Event Outcomes in an RCT in Oncology with Treatment Discontinuation due to Adverse Events

Fabrizia Mealli
Fabrizia.Mealli@eui.eu
European University Institute

Joint work with Veronica Ballerini (HSPH), Alessandra Mattei (Unifi), Björn Borkamp (Novartis), Craig Wang (Novartis), Yufen Zhang (Novartis)

> Workshop SISBAYES 2025 September 4-5, 2025, Padova, Italy

Randomized Clinical Trials with Treatment Discontinuation

- In randomized controlled trials (RCTs), patients sometimes discontinue study treatments prematurely due to reasons such as Adverse Events (AE)
- The addendum to the E9 guideline on 'Statistical principles in clinical trials', released by the International Council of Harmonization (ICH, 2019), calls these events intercurrent events
- Tripartite estimand strategy (Akacha et al., 2017):
 - √ Treatment effect for patients who adhere to the treatment for its intended duration
 - √ Proportion of patients who discontinue the treatment prematurely
 - √ Effect for patients who discontinue the treatment prematurely
- Rubin D.B. (1978) Bayesian Inference for Causal Effects: The Role of Randomization, The Annals of Statistics, 6 (1)
- Li F., Ding P., Mealli F. (2023). Bayesian causal inference: a critical review, Philosophical Transactions A 381(2247)

Motivating Study: A RCT in Oncology (Novartis Study)

- Randomized controlled clinical trial involving oncological patients
- Treatment variable: New treatment versus Standard of Care (SOC)
 - ✓ New treatment: New investigational drug + SOC
 - √ Standard / control treatment: SOC
- Outcome: Progression-free survival (Time from randomization until either disease progression or death)
- (One-sided) treatment discontinuation: Patients in the new treatment arm who incur AEs are allowed to discontinue the new investigational drug, but continue on SOC
- √ Treatment discontinuation can be viewed as a general form of noncompliance
- Treatment discontinuation is an intercurrent event because it occurs after treatment initiation, breaking initial randomization

Observed Data and Data Structure

- A three-dimensional vector of covariates: $X_i = (X_{i1}, X_{i2}, X_{i3})$ where X_{i1} is a risk score of progression; X_{i2} is a binary indicator for advanced metastatic status; and X_{i3} is binary indicator for high disease burden
- Treatment actually assigned: $Z_i = 1$ (Investigational drug + SOC) and $Z_i = 0$ (SOC)
- Let Y_i^{obs} and D_i^{obs} denote the survival time and the discontinuation time under the actual treatment assigned without censoring (in months)
- Duration of the study: 33 months with staggered patients' entry during the first 23 months
 - √ Censored progression-free survival and discontinuation time
- Censoring time: $C_i \in [10, 33]$

Censored survival time:

$$\tilde{Y}_i^{\text{obs}} = \min\{Y_i^{\text{obs}}, C_i\}$$

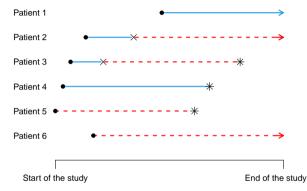
- Observed discontinuation time
 - \checkmark For a patient i with $Z_i = 0$,

$$\tilde{D}_i^{ ext{obs}} = D_i^{ ext{obs}} = \overline{\mathbb{D}}_i$$

where $\overline{\mathbb{D}}$ is a non-real value

✓ For a patient i with $Z_i = 1$:

$$ilde{D}_i^{ ext{obs}} = egin{cases} D_i^{ ext{obs}} & ext{if } D_i^{ ext{obs}} \in \mathbb{R}_+, D_i^{ ext{obs}} \leq C_i \\ C_i & ext{if } (D_i^{ ext{obs}} \in \mathbb{R}_+, D_i^{ ext{obs}} > C_i) \\ & ext{or } D_i^{ ext{obs}} = \overline{\mathbb{D}} \end{cases}$$



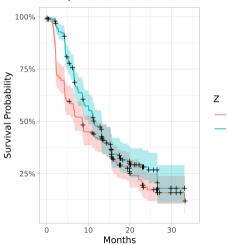
- Randomization On TRT + SOC ---- Off TRT but on SOC
- × Discontinuation of TRT * Disease progression/Death

Synthetic Data: Descriptive Statistics

Sample size: $n = 389, n_1 = 200, n_0 = 189$						
	Mean					
Variable	Mean	(Proportion)	SD			
Treatment assignment (Z_i)	0.51	(200/389)	_			
$\mathbb{I}\{D_i^{\mathrm{obs}} < C_i\}$	0.32	(64/200)	_			
Discontinuation time $(\tilde{D}_i^{\mathrm{obs}})^*$	4.85		6.73			
$\mathbb{I}\{Y_i^{\text{obs}} < C_i\}$	0.71	(278/389)	_			
Survival time $(\tilde{Y}_i^{ ext{obs}})^*$	8.44		6.43			
Covariates						
(Std) Risk score (X_{i1})	0.00		1.00			
Metastatic status (X_{i2})	0.49	(191/389)	_			
High disease burden (X_{i3})	0.32	(124/389)	_			

^{*}Means over patients who experience the event

Survival functions by assignment Z_i : kaplan-Meier estimates



Our Contribution

- We propose to re-define the problem of treatment discontinuation using principal stratification (Frangakis and Rubin 2002)
 - √ The principal stratification approach is recognized in the ICH E9(R1) addendum
 as a strategy to deal with intercurrent events
- Causal estimands: principal causal effects for patients belonging to subpopulations defined by the discontinuation behavior under treatment
 - √ Allow discontinuation behavior to be nonignorable and to characterize treatment effect heterogeneity w.r.t. discontinuation behavior
- We use a Bayesian approach for inference, which allows us to properly take into account that
 - √ The discontinuation time is either not defined for patients who would never discontinue or continuous generating a continuum of principal strata; and
 - √ Both survival time and discontinuation time are subject to censoring

Treatment Discontinuation with Censoring: Potential Outcomes

- Patients: $i = 1, \ldots, n$
- Binary treatment: $z \in \{0, 1\} = \{SOC, New drug + SOC\}$
- The Stable Unit Treatment Value Assumption (SUTVA) is assumed
- $Y_i(z)$ = Survival time given assignment to treatment z, with $Y_i(z) \in \mathbb{R}_+$, z = 0, 1,
- ullet $D_i(1) = {\sf Discontinuation}$ time under the new treatment with $D_i(1) \in \mathbb{R}_+ \cup \{\overline{\mathbb{D}}\}$
- $D_i(1) \le Y_i(1)$: the discontinuation time is censored by death with censoring event defined by $Y_i(1)$
- $C_i(z)$ = Censoring time given assignment to treatment z, z = 0, 1
 - \checkmark Assumption: For i = 1, ..., n, $C_i(0) = C_i(1) = C_i$

Principal Stratification w.r.t. Discontinuation Behavior

- The discontinuation behavior is defined by $D_i(1) \in \mathbb{R}_+ \cup \{\overline{\mathbb{D}}\}$
- Basic principal strata
 - ✓ Never-discontinuing (ND) patients = $\{i : D_i(1) = \overline{\mathbb{D}}\}$: Patients who would not discontinue the new investigational drug if assigned to it no matter how long the follow-up is
 - ✓ Discontinuing (D) patients = $\{i : D_i(1) = d, d \in \mathbb{R}_+\}$: Patients who would discontinue the new investigational drug if assigned to it at a given time point $d \in \mathbb{R}_+$
- All D patients = $\bigcup_{d \in \mathbb{R}_+} \{i : D_i(1) = d\}$

Principal Causal Effects for Survival Outcomes

- Distributional principal causal effects for
 - √ ND patients:

$$DCE_{ND}(y) = P\left\{Y_i(1) > y \mid D_i(1) = \overline{\mathbb{D}}\right\} - P\left\{Y_i(0) > y \mid D_i(1) = \overline{\mathbb{D}}\right\}, \quad y \in \mathbb{R}_+$$

✓ D patients:

$$DCE_{D}(y \mid d) = P\{Y_{i}(1) > y \mid D_{i}(1) = d\} - P\{Y_{i}(0) > y \mid D_{i}(1) = d\}, \qquad y, d \in \mathbb{R}_{+}$$

Restricted mean survival time principal causal effects

$$RMSTE_{ND}(\tau) = \int_0^{\tau} DCE_{ND}(y) dy$$
 and $RMSTE_{D}(\tau \mid d) = \int_0^{\tau} DCE_{D}(y \mid d) dy$

for $\tau, d \in \mathbb{R}_+$

Principal Causal Effects and Overall Causal Effects

- Let $\pi_{\overline{n}}$ be the probability that a patient is a ND patient
- Overall distributional causal effects

$$DCE(y) = P\left\{Y_i(1) > y\right\} - P\left\{Y_i(0) > y\right\} = \pi_{\overline{\mathbb{D}}}DCE_{ND}(y) + (1 - \pi_{\overline{\mathbb{D}}})DCE_{D}(y) \quad y \in \mathbb{R}_+$$

where

$$DCE_{D}(y) = \int_{\mathbb{R}_{+}} DCE_{D}(y \mid d) f_{D(1)}(d) dd$$

Overall restricted mean survival time effects

$$\mathit{RMSTE}(\tau) = \int_0^\tau \mathit{DCE}(y) \; \mathrm{d}y = \pi_{\overline{\mathbb{D}}} \mathit{RMSTE}_{\mathrm{ND}}(\tau) + (1 - \pi_{\overline{\mathbb{D}}}) \mathit{RMSTE}_{\mathrm{D}}(\tau) \quad \tau \in \mathbb{R}_+$$

where

$$RMSTE_{D}(\tau) = \int_{0}^{\tau} DCE_{D}(y) dy = \int_{0}^{\tau} \int_{\mathbb{R}_{+}} DCE_{D}(y \mid d) f_{D(1)}(d) dd dy$$

Remark: The overall causal effects are ITT effects

Observed Data Pattern and Possible Latent Principal Strata

- Both $Y_i(z)$ and $D_i(1)$ might be right censored with censoring time C_i
- Therefore, we observe

$$\tilde{Y}_i^{\text{obs}} = \min\{Y_i^{\text{obs}}, C_i\} = \min\{Z_i Y_i(1) + (1 - Z_i) Y_i(0), C_i\}$$

and

$$ilde{D}_i^{ ext{obs}} = egin{cases} \min\{D_i(1),C_i\} & ext{if } D_i(1) \in \mathbb{R}_+ ext{ and } Z_i = 1 \ C_i & ext{if } D_i(1) = \overline{\mathbb{D}} ext{ and } Z_i = 1 \ \overline{\mathbb{D}} & ext{if } Z_i = 0 \end{cases}$$

Z_i	$ ilde{D}_i^{ ext{obs}}$	$\widetilde{Y}_i^{ ext{obs}}$	Principal strata	Principal stratum label
1	C_i	$Y_i^{ ext{obs}} \in [0, C_i)$	$\{i:D_i(1)=\overline{\mathbb{D}}\}$	ND patients
1	$D_i^{ ext{obs}} \leq C_i$	$Y_i^{ ext{obs}} \in [D_i^{ ext{obs}}, C_i)$	$\{i:D_i(1)=D_i^{\rm obs}\}$	D patients at time $D_i^{ m obs}$
1	$D_i^{ ext{obs}} \leq C_i$	C_i	$\{i:D_i(1)=D_i^{\rm obs}\}$	D patients at time $D_i^{ m obs}$
1	C_i	C_i	$\left\{i:D_i(1)=\overline{\mathbb{D}}\right\}$ or $\left\{i:D_i(1)=d\in(C_i,+\infty)\right\}$	ND patients or D patients at some time $d > C_i$
0	C_{i}	$Y_i^{ ext{obs}} \in [0, C_i]$	$\left\{i:D_i(1)=\overline{\mathbb{D}} \text{ or } D_i(1)\in\mathbb{R}_+\right\}$	ND or D patients
0	C_i	C_i	$\left\{i:D_i(1)=\overline{\mathbb{D}} \text{ or } D_i(1)\in\mathbb{R}_+\right\}$	ND or D patients

Identification Issues under Randomization

Completely Randomized Experiment

$$P\{Z_i \mid D_i(1), Y_i(0), Y_i(1), C_i, X_i\} = P\{Z_i\}$$

Ignorability of the Censoring Mechanism

$$P\{C_i \mid D_i(1), Y_i(0), Y_i(1), X_i\} = P\{C_i \mid X_i\}$$

 Randomization and ignorability of the censoring mechanism help inference, but the identification of principal causal effects requires further structural and/or distributional assumptions

Bayesian Approach to Inference

• The Bayesian approach can handle weakly or partially identified parameters

 The Bayesian approach allows us to deal with all complications – missing data, truncation by death, censoring – simultaneously in a natural way

 In Bayesian analysis, inferences are directly interpretable in probabilistic terms

Bayesian Principal Stratification

Joint distribution of all observed and unobserved random variables,

$$(X, C, D(1), Y(0), Y(1), Z) = [X_i, C_i, D_i(1), Y_i(0), Y_i(1), Z_i]_{i=1}^n,$$

under exchangeability:

$$P\{X, \mathbf{C}, \mathbf{D}(1), Y(0), Y(1), \mathbf{Z}\} = \int \prod_{i=1}^{n} P\{X_{i}, C_{i}, D_{i}(1), Y_{i}(0), Y_{i}(1), X_{i}, Z_{i} \mid \boldsymbol{\theta}\} P(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$= \int \prod_{i=1}^{n} P\{X_{i} \mid \boldsymbol{\theta}\} P\{D_{i}(1) \mid X_{i}; \boldsymbol{\theta}\} P\{Y_{i}(0), Y_{i}(1) \mid D_{i}(1), X_{i}; \boldsymbol{\theta}\}$$

$$P\{C_{i} \mid Y_{i}(1), Y_{i}(0), D_{i}(1), X_{i}; \boldsymbol{\theta}\} P\{Z_{i} \mid Y_{i}(1), Y_{i}(0), D_{i}(1), C_{i}, X_{i}; \boldsymbol{\theta}\} P(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

 Under randomization and ignorability of censoring, and conditioning on the empirical distribution of the covariates

$$P\left\{\boldsymbol{X},\boldsymbol{C},\boldsymbol{D}(1),\boldsymbol{Y}(0),\boldsymbol{Y}(1),\boldsymbol{Z}\right\} \propto \int \prod_{i=1}^{n} P\left\{D_{i}(1) \mid \boldsymbol{X}_{i};\boldsymbol{\theta}\right\} P\left\{Y_{i}(1),Y_{i}(0) \mid D_{i}(1),\boldsymbol{X}_{i};\boldsymbol{\theta}\right\} P(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

Mixed causal effects (Li, Ding, Mealli, 2023)

Bayesian Approach to Inference: Parametric Assumptions

- We follow a similar modeling strategy as in *Mattei et al. (2025)*
- Sub-model for the Discontinuation Behavior: A two-part model with

$$\mathbb{I}_{i}^{\text{ND}} = \mathbb{I}\{D_{i}(1) = \overline{\mathbb{D}}\} \sim \text{Ber}(\pi(X_{i})) \quad \text{with} \quad \pi(X_{i}) = \frac{\exp(\gamma_{0} + X_{i}'\gamma)}{1 + \exp(\gamma_{0} + X_{i}'\gamma)} \quad \gamma_{0} \in \mathbb{R}, \gamma \in \mathbb{R}^{K}, \\
\left(D_{i}(1) \mid \mathbb{I}_{i}^{\text{ND}} = 0, X_{i}\right) \sim \exp\left(e^{\beta_{D} + X_{i}'\eta_{D}}\right), \quad \beta_{D} \in \mathbb{R}, \eta_{D} \in \mathbb{R}^{K}$$

- Assumption: $Y_i(1) \perp \perp Y_i(0) \mid D_i(1), X_i, \theta$
- Sub-models for $Y_i(z) \mid D_i(1), X_i$ for ND patients, z = 0, 1:

• Sub-models for $Y_i(z) \mid D_i(1), X_i$ for D patients, z = 0, 1:

$$\begin{split} \left(Y_i(0) \mid \mathbb{I}_i^{\text{ND}} = 0, D_i(1), X_i\right) &\sim \text{Exp}\left(e^{\beta_0 + X_i'} \boldsymbol{\eta}_0 + \boldsymbol{\delta} \log(D_i(1))\right), \\ \left(Y_i(1) \mid \mathbb{I}_i^{\text{ND}} = 0, D_i(1), X_i\right) &\sim \text{TExp}_{D_i(1)}\left(e^{\beta_1 + X_i'} \boldsymbol{\eta}_1 + \boldsymbol{\delta} \log(D_i(1))\right), \end{split}$$

with $\beta_0, \delta \in \mathbb{R}$, $\eta_0 \in \mathbb{R}^K$ and $\beta_1, \delta \in \mathbb{R}$, $\eta_1 \in \mathbb{R}^K$, and $\text{TExp}_{D_i(1)}$ stands for a left truncated Exponential distribution with truncation parameter $D_i(1)$

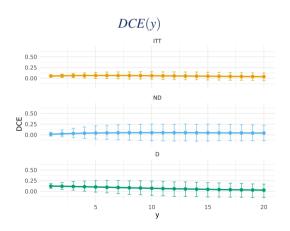
- For D patients, the parameter δ describes both the association between $Y_i(1)$ and $D_i(1)$ given X_i as well as the association between $Y_i(0)$ and $D_i(1)$ given X_i
 - ✓ Because $D_i(1)$ is never observed for control patients, the observed data provide no information about the association between $Y_i(0)$ and $D_i(1)$ given X_i
 - ✓ Because $D_i(1)$ and $Y_i(1)$ are jointly observed for some treated patients, we have some information on δ

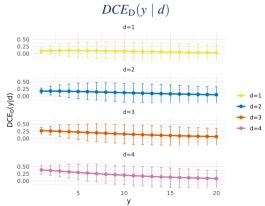
Prior Distribution and Posterior Distribution

- We assume that the parameters are a priori independent
- Prior distribution: Normal prior distributions for the parameters of the logistic regression model for the probability of being a ND patient, and for the intercept and the slope parameters of the Exponential distributions
- Posterior distribution: MCMC Algorithm with Data Augmentation
- Posterior predictive checks: We evaluate the credibility of our parametric assumptions with posterior predictive checks, computing Bayesian posterior predictive p-values Our PPPV suggest that our model adequately reproduce the features of the data reflected in the discrepancy measure

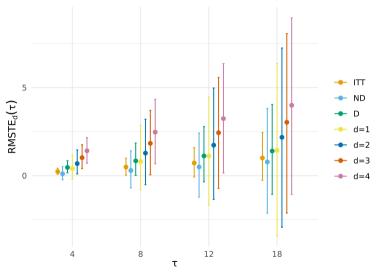
Results for the Synthetic Dataset

Estimand	Posterior Mean	95% HPD
$\pi_{\sf ND}$	0.65	[0.59; 0.70]

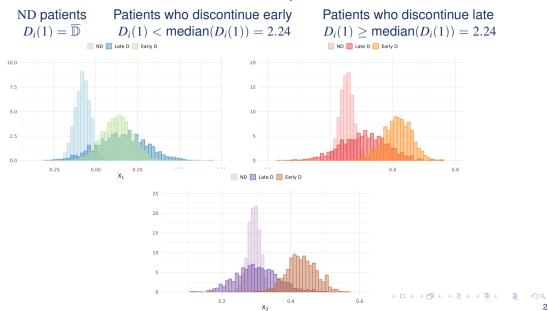




Restricted mean survival time effects at $\tau = 4, 8, 12, 18$ months



A Characterization of the Latent Principal Strata



Discussion

- Principal stratification approach to clinical trials with one-sided treatment discontinuation
- The role of the pre-treatment covariates
 - √ Conditioning on covariates makes structural and parametric assumptions more credible
 - √ Covariates usually lead to more precise inferences
 - ✓ In the principal stratification analysis, relevant information could also be obtained looking at the distribution of baseline characteristics within each principal stratum
- The Bayesian approach to principal stratification
- Simulation study to investigate the performance of the Bayesian principal stratification approach in repeated sampling

References

Akacha M., Bretz F., Ruberg S. (2017). Estimands in clinical trials – broadening the perspective. Statistics in medicine 36(1), 5-19.

Frangakis C.E., Rubin D.B. (2002). Principal stratification in causal inference. Biometrics 58, 191-199.

Hernan M.A., Brumback B., Robins J.M. (2000). Marginal structural models to estimate the causal effect of zidovudine on the survival of hiv-positive men. Epidemiology 1, 561-570.

ICH. (2019). Addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials, E9(R1).

Li F., Ding P., Mealli F. (2023). Bayesian causal inference: a critical review. Philosophical Transactions of the Royal Society A 381(2247), 20220153.

Mattei A., Ding P., Ballerini V., Mealli F. (2025). Assessing causal effects in the presence of treatment switching through principal stratification. Bayesian Analysis.

