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Randomized Clinical Trials with Treatment Discontinuation

@ In randomized controlled trials (RCTs), patients sometimes discontinue study
treatments prematurely due to reasons such as Adverse Events (AE)

@ The addendum to the E9 guideline on ’Statistical principles in clinical trials’,
released by the International Council of Harmonization (ICH, 2019), calls
these events intercurrent events

@ Tripartite estimand strategy (Akacha et al., 2017):

v Treatment effect for patients who adhere to the treatment for its intended
duration

v Proportion of patients who discontinue the treatment prematurely

v’ Effect for patients who discontinue the treatment prematurely

@ Rubin D.B. (1978) Bayesian Inference for Causal Effects: The Role of
Randomization, The Annals of Statistics, 6 (1)

@ Li F, Ding P., Mealli F. (2023). Bayesian causal inference: a critical review,
Philosophical Transactions A 381(2247)



Motivating Study: A RCT in Oncology (Novartis Study)

@ Randomized controlled clinical trial involving oncological patients
@ Treatment variable: New treatment versus Standard of Care (SOC)
v" New treatment: New investigational drug + SOC
v/ Standard / control treatment: SOC

@ Outcome: Progression-free survival (Time from randomization until either
disease progression or death)

@ (One-sided) treatment discontinuation: Patients in the new treatment arm who
incur AEs are allowed to discontinue the new investigational drug, but
continue on SOC

v Treatment discontinuation can be viewed as a general form of noncompliance

@ Treatment discontinuation is an intercurrent event because it occurs after
treatment initiation, breaking initial randomization



Observed Data and Data Structure

@ A three-dimensional vector of covariates: X; = (X;1, X, X;3) where X, is a risk score
of progression; X, is a binary indicator for advanced metastatic status; and X;; is
binary indicator for high disease burden

@ Treatment actually assigned: Z; = 1 (Investigational drug + SOC) and Z; = 0 (SOC)

@ Let ¥/ and D™ denote the survival time and the discontinuation time under the
actual treatment assigned without censoring (in months)

@ Duration of the study: 33 months with staggered patients’ entry during the first 23
months

v~ Censored progression-free survival and discontinuation time

@ Censoring time: C; € [10, 33]



@ Censored survival time:

?iObs _ Inin{YiObs, Ci} Patient 1
Patient 2 X - - - - - - - - - - -- -
@ Observed discontinuation time pationt 3 e %
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Synthetic Data: Descriptive Statistics

Sample sizen = 389, n; = 200, 1y = 189 Survival functions by assignment Z;:

Mean kaplan-Meier estimates

Variable Mean (Proportion) SD 100%

Treatment assignment (Z;) 0.51 (200/389) -

I{D < C} 032 (64/200)  — .

Discontinuation time (D) | 4.85 6.73 %

I{Y™ < C;} 071  (278/389) - 3 z

Survival time (79%)* 8.44 6.43 E e

Covariates E

(Std) Risk score (X;1) 0.00 1.00 25%

Metastatic status (X;,) 0.49  (191/389) - E’:ir"l

High disease burden (X;3) 032  (124/389) -

n . 0 10 20 30
*Means over patients who experience the event Months

— 0
— 1



Our Contribution

@ We propose to re-define the problem of treatment discontinuation using principal
stratification (Frangakis and Rubin 2002)

v The principal stratification approach is recognized in the ICH E9(R1) addendum
as a strategy to deal with intercurrent events

@ Causal estimands: principal causal effects for patients belonging to subpopulations
defined by the discontinuation behavior under treatment

v Allow discontinuation behavior to be nonignorable and to characterize treatment
effect heterogeneity w.r.t. discontinuation behavior

@ We use a Bayesian approach for inference, which allows us to properly take into
account that

v The discontinuation time is either not defined for patients who would never
discontinue or continuous generating a continuum of principal strata; and

v Both survival time and discontinuation time are subject to censoring



Treatment Discontinuation with Censoring: Potential Outcomes
@ Patients: i=1,...,n

@ Binary treatment: z € {0, 1} = {SOC, New drug + SOC}

The Stable Unit Treatment Value Assumption (SUTVA) is assumed
@ Y;(z) = Survival time given assignment to treatment z, with Y;(z) € R4,z = 10,1,

@ D;(1) = Discontinuation time under the new treatment with D;(1) € R, U {D}

D;(1) < Y;(1): the discontinuation time is censored by death with censoring event
defined by Y;(1)

@ Ci(z) = Censoring time given assignment to treatment z, z = 0, 1

v Assumption: Fori=1,...,n, C;(0) = C;(1) = C;



Principal Stratification w.r.t. Discontinuation Behavior

@ The discontinuation behavior is defined by D;(1) € R, U {D}
@ Basic principal strata

v Never-discontinuing (ND) patients = {i : D;(1) = D}: Patients who would
not discontinue the new investigational drug if assigned to it no matter
how long the follow-up is

v" Discontinuing (D) patients = {i : D;(1) = d,d € R, }: Patients who would

discontinue the new investigational drug if assigned to it at a given time
pointd € R

@ All D patients = Uger_ {i : Di(1) = d}



Principal Causal Effects for Survival Outcomes

@ Distributional principal causal effects for
v ND patients:
DCExp(y) = P{Yi(1) >y | D;(1) =D} — P{Y;(0) >y | D;(1) =D}, yeRy
v' D patients:

DCEp(y | d) = P{Yi(1) >y [ Di(1) = d} = P{Yi(0) >y [ Di(1) = d},  y,d €Ry

@ Restricted mean survival time principal causal effects
RMSTENp(T) = / DCEnp(y) dy and ~ RMSTEp(7 | d) = / DCEp(y | d) dy
0 0

for r,d € R4



Principal Causal Effects and Overall Causal Effects

@ Let m; be the probability that a patient is a ND patient
@ Overall distributional causal effects

DCE(y) = P{Yi(1) > y} = P{Yi(0) > y} = m; DCExp(y) + (1 — m5)DCEp(y) y € Ry

where
DCE(y) = / DCEp(y | d) fo(d) dd
Ry

@ Overall restricted mean survival time effects
RMSTE(T) = / DCE(y) dy = 75 RMSTENp(T) + (1 — m5)RMSTEp (1) 7 € Ry
0
where

RMSTE () — / DCEp(y) dy = / / DCEb(y | d) fou)(d) dd dy

@ Remark: The overall causal effects are ITT effects



Observed Data Pattern and Possible Latent Principal Strata

@ Both Yi(z) and D;(1) might be right censored with censoring time C;

@ Therefore, we observe
Yo% = min{Y®, C;} = min{Z¥i(1) + (1 — Z)Y;(0), C;}
and

min{D,-(l), C,} if D,(l) € R+ and Z; =1
D> = (¢ if Di(1) =Dand Z = 1
D ifZ; =0



yobs
Y;

Principal strata

Principal stratum label

YiObS €10,G)
P € [, C)
C;

G

YiObs c [O,Cl]

Ci

{i: Di(1) =D}
{i: Di(1) = D¢}
{i: Di(1) = D™}

{i:D;(1) =D} or
{i:Di(1) =d € (C;,+00)}

{i:Di(1)=DorDy(1) e Ry}

{i:D;(1)=DorDi(1) Ry}

ND patients
D patients at time D¢
D patients at time D9®s

ND patients or
D patients at some time d > C;

ND or D patients

ND or D patients




Identification Issues under Randomization

@ Completely Randomized Experiment

P{Z; | D;(1),Y;(0),Y:i(1),C;,X;} = P{Z;}

@ Ignorability of the Censoring Mechanism

P{C; | Di(1),Y:i(0),Y;(1),X;} = P{C;i | X;}

@ Randomization and ignorability of the censoring mechanism help inference,
but the identification of principal causal effects requires further structural
and/or distributional assumptions



Bayesian Approach to Inference

@ The Bayesian approach can handle weakly or partially identified parameters

@ The Bayesian approach allows us to deal with all complications — missing
data, truncation by death, censoring — simultaneously in a natural way

@ In Bayesian analysis, inferences are directly interpretable in probabilistic
terms



Bayesian Principal Stratification

@ Joint distribution of all observed and unobserved random variables,
(Xa CvD(l)v Y(O)v Y(l),Z) = [Xiv CiaDi(l)v Yi(o)a Yi(l)aziw:h

under exchangeability:

P{X,C,D(1), ¥(0), ¥(1) Z}—/Hp{x,,c,,Du (0, ¥i(1), X.Z | 0} P(8)d0

/HP{Xi |0} P{Di(1) | X;;0} P{Yi(0), Yi(1) | Di(1), X;; 6}

@ Under randomization and ignorability of censoring, and conditioning on the empirical
distribution of the covariates

P{X,C,D(1),Y(0),Y(1),Z} /HP{D )| X;;0} P{Y:(1),Y;(0) | D;(1),X;;0} P(6)d 0

@ Mixed causal effects (Li, Ding, Mealli, 2023)



Bayesian Approach to Inference: Parametric Assumptions

@ We follow a similar modeling strategy as in Mattei et al. (2025)

@ Sub-model for the Discontinuation Behavior: A two-part model with

Y — [{Dy(1) = D} ~ Ber(n(X))  with m(X;) — —P00 £ X7)

= € R,y € R¥,
I foxpo+Xy) K

(Di(l) | H?D = O7Xi> ~ Exp (eBDJrX",nD) , BpeR,mpc R¥

@ Assumption: ¥;(1) LL Y;(0) | D;(1),X;,6
@ Sub-models for Y;(z) | D;(1), X; for ND patients, z =0, I:
(Yl(o) ‘ H%\ID = I)Xi) ~ EXp (eBO+X;ﬁO) ) BO S Rv 770 S RK

(Yl(l) ‘ HE\ID = 17Xi) ~ EXp (651+X{ﬁ]) ) Bl € Raﬁl S RK



@ Sub-models for Y;(z) | Di(1), X; for D patients, z =0, 1:
(Yi(0) | IX> = 0, D5(1), X;) ~ Exp (et ¥Xim+oloavi() )
(Y,-(l) | HE\ID = 07Di(1)aXi) ~ TEXpDi(l) (eﬂl‘f‘xi/"?l"rélog(Di(l))) ,

with 5,6 € R,mo € RX and 1,6 € R,m € R¥, and TExp,, ,, stands for a left
truncated Exponential distribution with truncation parameter D;(1)

@ For D patients, the parameter ¢ describes both the association between Y;(1) and
D;(1) given X; as well as the association between Y;(0) and D;(1) given X;

v Because D;(1) is never observed for control patients, the observed data provide
no information about the association between Y;(0) and D;(1) given X;

v Because D;(1) and Y;(1) are jointly observed for some treated patients, we have
some information on ¢



Prior Distribution and Posterior Distribution

@ We assume that the parameters are a priori independent

@ Prior distribution: Normal prior distributions for the parameters of the logistic
regression model for the probability of being a ND patient, and for the intercept and
the slope parameters of the Exponential distributions

@ Posterior distribution: MCMC Algorithm with Data Augmentation

@ Posterior predictive checks: We evaluate the credibility of our parametric
assumptions with posterior predictive checks, computing Bayesian posterior
predictive p-values Our PPPV suggest that our model adequately reproduce the
features of the data reflected in the discrepancy measure



Results for the Synthetic Dataset
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Restricted mean survival time effects at = = 4, 8, 12, 18 months
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A Characterization of the Latent Principal Strata

ND patients Patients who discontinue early Patients who discontinue late
D;(1)=D D;(1) < median(D;(1)) = 2.24 D;(1) > median(D;(1)) = 2.24

ND [[] LateD = Early D ND [[] Late D [ ] Early D
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Discussion

@ Principal stratification approach to clinical trials with one-sided treatment
discontinuation

@ The role of the pre-treatment covariates

v~ Conditioning on covariates makes structural and parametric assumptions
more credible

v Covariates usually lead to more precise inferences

v" In the principal stratification analysis, relevant information could also be
obtained looking at the distribution of baseline characteristics within each
principal stratum

@ The Bayesian approach to principal stratification

@ Simulation study to investigate the performance of the Bayesian principal
stratification approach in repeated sampling
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