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Randomized Clinical Trials with Treatment Discontinuation

In randomized controlled trials (RCTs), patients sometimes discontinue study
treatments prematurely due to reasons such as Adverse Events (AE)
The addendum to the E9 guideline on ’Statistical principles in clinical trials’,
released by the International Council of Harmonization (ICH, 2019), calls
these events intercurrent events
Tripartite estimand strategy (Akacha et al., 2017):
✓ Treatment effect for patients who adhere to the treatment for its intended

duration
✓ Proportion of patients who discontinue the treatment prematurely
✓ Effect for patients who discontinue the treatment prematurely

Rubin D.B. (1978) Bayesian Inference for Causal Effects: The Role of
Randomization, The Annals of Statistics, 6 (1)
Li F., Ding P., Mealli F. (2023). Bayesian causal inference: a critical review,
Philosophical Transactions A 381(2247)
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Motivating Study: A RCT in Oncology (Novartis Study)

Randomized controlled clinical trial involving oncological patients

Treatment variable: New treatment versus Standard of Care (SOC)

✓ New treatment: New investigational drug + SOC
✓ Standard / control treatment: SOC

Outcome: Progression-free survival (Time from randomization until either
disease progression or death)

(One-sided) treatment discontinuation: Patients in the new treatment arm who
incur AEs are allowed to discontinue the new investigational drug, but
continue on SOC

✓ Treatment discontinuation can be viewed as a general form of noncompliance

Treatment discontinuation is an intercurrent event because it occurs after
treatment initiation, breaking initial randomization
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Observed Data and Data Structure

A three-dimensional vector of covariates: Xi = (Xi1,Xi2,Xi3) where Xi1 is a risk score
of progression; Xi2 is a binary indicator for advanced metastatic status; and Xi3 is
binary indicator for high disease burden

Treatment actually assigned: Zi = 1 (Investigational drug + SOC) and Zi = 0 (SOC)

Let Yobs
i and Dobs

i denote the survival time and the discontinuation time under the
actual treatment assigned without censoring (in months)

Duration of the study: 33 months with staggered patients’ entry during the first 23
months

✓ Censored progression-free survival and discontinuation time

Censoring time: Ci ∈ [10, 33]
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Censored survival time:

Ỹobs
i = min{Yobs

i ,Ci}

Observed discontinuation time

✓ For a patient i with Zi = 0,

D̃obs
i = Dobs

i = Di

where D is a non-real value

✓ For a patient i with Zi = 1:

D̃obs
i =


Dobs

i if Dobs
i ∈ R+,Dobs

i ≤ Ci

if (Dobs
i ∈ R+,Dobs

i > Ci)Ci or Dobs
i = D

Patient 6  

Patient 5  

Patient 4  

Patient 3  

Patient 2  

Patient 1  

Start of the study End of the study

Randomization On TRT + SOC Off TRT but on SOC

Discontinuation of TRT Disease progression/Death
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Synthetic Data: Descriptive Statistics

Sample size:n = 389, n1 = 200, n0 = 189
Mean

Variable Mean (Proportion) SD

Treatment assignment (Zi) 0.51 (200/389) −
I{Dobs

i < Ci} 0.32 (64/200) −

Discontinuation time (D̃obs
i )∗ 4.85 6.73

I{Yobs
i < Ci} 0.71 (278/389) −

Survival time (Ỹobs
i )∗ 8.44 6.43

Covariates

(Std) Risk score (Xi1) 0.00 1.00

Metastatic status (Xi2) 0.49 (191/389) −
High disease burden (Xi3) 0.32 (124/389) −
∗Means over patients who experience the event

Survival functions by assignment Zi:
kaplan-Meier estimates
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Our Contribution

We propose to re-define the problem of treatment discontinuation using principal
stratification (Frangakis and Rubin 2002)

✓ The principal stratification approach is recognized in the ICH E9(R1) addendum
as a strategy to deal with intercurrent events

Causal estimands: principal causal effects for patients belonging to subpopulations
defined by the discontinuation behavior under treatment

✓ Allow discontinuation behavior to be nonignorable and to characterize treatment
effect heterogeneity w.r.t. discontinuation behavior

We use a Bayesian approach for inference, which allows us to properly take into
account that

✓ The discontinuation time is either not defined for patients who would never
discontinue or continuous generating a continuum of principal strata; and

✓ Both survival time and discontinuation time are subject to censoring
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Treatment Discontinuation with Censoring: Potential Outcomes

Patients: i = 1, . . . , n

Binary treatment: z ∈ {0, 1} = {SOC,New drug + SOC}

The Stable Unit Treatment Value Assumption (SUTVA) is assumed

Yi(z) = Survival time given assignment to treatment z, with Yi(z) ∈ R+, z = 0, 1,

Di(1) = Discontinuation time under the new treatment with Di(1) ∈ R+ ∪ {D}

Di(1) ≤ Yi(1): the discontinuation time is censored by death with censoring event
defined by Yi(1)

Ci(z) = Censoring time given assignment to treatment z, z = 0, 1

✓ Assumption: For i = 1, . . . , n, Ci(0) = Ci(1) = Ci
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Principal Stratification w.r.t. Discontinuation Behavior

The discontinuation behavior is defined by Di(1) ∈ R+ ∪ {D}

Basic principal strata

✓ Never-discontinuing (ND) patients = {i : Di(1) = D}: Patients who would
not discontinue the new investigational drug if assigned to it no matter
how long the follow-up is

✓ Discontinuing (D) patients = {i : Di(1) = d, d ∈ R+}: Patients who would
discontinue the new investigational drug if assigned to it at a given time
point d ∈ R+

All D patients = ∪d∈R+{i : Di(1) = d}
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Principal Causal Effects for Survival Outcomes

Distributional principal causal effects for

✓ ND patients:

DCEND(y) = P
{

Yi(1) > y | Di(1) = D
}
− P

{
Yi(0) > y | Di(1) = D

}
, y ∈ R+

✓ D patients:

DCED(y | d) = P {Yi(1) > y | Di(1) = d} − P {Yi(0) > y | Di(1) = d} , y, d ∈ R+

Restricted mean survival time principal causal effects

RMSTEND(τ) =

∫ τ

0
DCEND(y) dy and RMSTED(τ | d) =

∫ τ

0
DCED(y | d) dy

for τ, d ∈ R+
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Principal Causal Effects and Overall Causal Effects

Let πD be the probability that a patient is a ND patient

Overall distributional causal effects

DCE(y) = P {Yi(1) > y} − P {Yi(0) > y} = πD DCEND(y) + (1 − πD)DCED(y) y ∈ R+

where
DCED(y) =

∫
R+

DCED(y | d) fD(1)(d) dd

Overall restricted mean survival time effects

RMSTE(τ) =
∫ τ

0
DCE(y) dy = πD RMSTEND(τ) + (1 − πD)RMSTED(τ) τ ∈ R+

where

RMSTED(τ) =

∫ τ

0
DCED(y) dy =

∫ τ

0

∫
R+

DCED(y | d) fD(1)(d) dd dy

Remark: The overall causal effects are ITT effects
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Observed Data Pattern and Possible Latent Principal Strata

Both Yi(z) and Di(1) might be right censored with censoring time Ci

Therefore, we observe

Ỹobs
i = min{Yobs

i ,Ci} = min{ZiYi(1) + (1 − Zi)Yi(0),Ci}

and

D̃obs
i =


min{Di(1),Ci} if Di(1) ∈ R+ and Zi = 1
Ci if Di(1) = D and Zi = 1
D if Zi = 0
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Zi D̃obs
i Ỹobs

i Principal strata Principal stratum label

1 Ci Yobs
i ∈ [0,Ci) {i : Di(1) = D} ND patients

1 Dobs
i ≤ Ci Yobs

i ∈ [Dobs
i ,Ci) {i : Di(1) = Dobs

i } D patients at time Dobs
i

1 Dobs
i ≤ Ci Ci {i : Di(1) = Dobs

i } D patients at time Dobs
i

1 Ci Ci
{

i : Di(1) = D
}

or ND patients or
{i : Di(1) = d ∈ (Ci,+∞)} D patients at some time d > Ci

0 Ci Yobs
i ∈ [0,Ci]

{
i : Di(1) = D or Di(1) ∈ R+

}
ND or D patients

0 Ci Ci
{

i : Di(1) = D or Di(1) ∈ R+

}
ND or D patients
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Identification Issues under Randomization

Completely Randomized Experiment

P {Zi | Di(1),Yi(0),Yi(1),Ci,Xi} = P {Zi}

Ignorability of the Censoring Mechanism

P {Ci | Di(1),Yi(0),Yi(1),Xi} = P {Ci | Xi}

Randomization and ignorability of the censoring mechanism help inference,
but the identification of principal causal effects requires further structural
and/or distributional assumptions
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Bayesian Approach to Inference

The Bayesian approach can handle weakly or partially identified parameters

The Bayesian approach allows us to deal with all complications – missing
data, truncation by death, censoring – simultaneously in a natural way

In Bayesian analysis, inferences are directly interpretable in probabilistic
terms
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Bayesian Principal Stratification

Joint distribution of all observed and unobserved random variables,

(X,C,D(1),Y(0),Y(1),Z) = [Xi,Ci,Di(1),Yi(0),Yi(1),Zi]
n
i=1,

under exchangeability:

P {X,C,D(1),Y(0),Y(1),Z} =

∫ n∏
i=1

P {Xi,Ci,Di(1),Yi(0),Yi(1),Xi,Zi | θ}P(θ)dθ

=

∫ n∏
i=1

P {Xi | θ}P {Di(1) | Xi;θ}P {Yi(0),Yi(1) | Di(1),Xi;θ}

P {Ci | Yi(1),Yi(0),Di(1),Xi;θ}P {Zi | Yi(1),Yi(0),Di(1),Ci,Xi;θ}P(θ)dθ

Under randomization and ignorability of censoring, and conditioning on the empirical
distribution of the covariates

P {X,C,D(1),Y(0),Y(1),Z} ∝
∫ n∏

i=1

P {Di(1) | Xi;θ}P {Yi(1),Yi(0) | Di(1),Xi;θ}P(θ)dθ

Mixed causal effects (Li, Ding, Mealli, 2023)
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Bayesian Approach to Inference: Parametric Assumptions

We follow a similar modeling strategy as in Mattei et al. (2025)

Sub-model for the Discontinuation Behavior: A two-part model with

IND
i = I{Di(1) = D} ∼ Ber(π(Xi)) with π(Xi) =

exp(γ0 + X′
iγ)

1 + exp(γ0 + X′
iγ)

γ0 ∈ R,γ ∈ RK ,

(
Di(1) | IND

i = 0,Xi
)
∼ Exp

(
eβD+X′

i ηD

)
, βD ∈ R,ηD ∈ RK

Assumption: Yi(1) ⊥⊥ Yi(0) | Di(1),Xi,θ

Sub-models for Yi(z) | Di(1),Xi for ND patients, z = 0, 1:(
Yi(0) | IND

i = 1,Xi
)
∼ Exp

(
eβ̄0+X′

i η̄0

)
, β̄0 ∈ R, η̄0 ∈ RK(

Yi(1) | IND
i = 1,Xi

)
∼ Exp

(
eβ̄1+X′

i η̄1

)
, β̄1 ∈ R, η̄1 ∈ RK
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Sub-models for Yi(z) | Di(1),Xi for D patients, z = 0, 1:(
Yi(0) | IND

i = 0,Di(1),Xi
)
∼ Exp

(
eβ0+X′

i η0+δ log(Di(1))
)
,(

Yi(1) | IND
i = 0,Di(1),Xi

)
∼ TExpDi(1)

(
eβ1+X′

i η1+δ log(Di(1))
)
,

with β0, δ ∈ R,η0 ∈ RK and β1, δ ∈ R,η1 ∈ RK , and TExpDi(1) stands for a left
truncated Exponential distribution with truncation parameter Di(1)

For D patients, the parameter δ describes both the association between Yi(1) and
Di(1) given Xi as well as the association between Yi(0) and Di(1) given Xi

✓ Because Di(1) is never observed for control patients, the observed data provide
no information about the association between Yi(0) and Di(1) given Xi

✓ Because Di(1) and Yi(1) are jointly observed for some treated patients, we have
some information on δ
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Prior Distribution and Posterior Distribution

We assume that the parameters are a priori independent

Prior distribution: Normal prior distributions for the parameters of the logistic
regression model for the probability of being a ND patient, and for the intercept and
the slope parameters of the Exponential distributions

Posterior distribution: MCMC Algorithm with Data Augmentation

Posterior predictive checks: We evaluate the credibility of our parametric
assumptions with posterior predictive checks, computing Bayesian posterior
predictive p-values Our PPPV suggest that our model adequately reproduce the
features of the data reflected in the discrepancy measure
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Results for the Synthetic Dataset

Estimand Posterior Mean 95% HPD
πND 0.65 [0.59; 0.70]

DCE(y) DCED(y | d)
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Restricted mean survival time effects at τ = 4, 8, 12, 18 months
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A Characterization of the Latent Principal Strata
ND patients Patients who discontinue early Patients who discontinue late
Di(1) = D Di(1) < median(Di(1)) = 2.24 Di(1) ≥ median(Di(1)) = 2.24
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Discussion

Principal stratification approach to clinical trials with one-sided treatment
discontinuation

The role of the pre-treatment covariates

✓ Conditioning on covariates makes structural and parametric assumptions
more credible

✓ Covariates usually lead to more precise inferences

✓ In the principal stratification analysis, relevant information could also be
obtained looking at the distribution of baseline characteristics within each
principal stratum

The Bayesian approach to principal stratification

Simulation study to investigate the performance of the Bayesian principal
stratification approach in repeated sampling
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