

Closed-Form Power and Sample Size Calculations for Bayes Factors

Samuel Pawel, Leonhard Held

Department of Biostatistics, Center for Reproducible Science and Research Synthesis University of Zurich

samuel.pawel@uzh.ch, https://orcid.org/0000-0003-2779-320X

September 4, 2025 – SISBAYES 2025 – Padova

Sample Size Determination

Sample Size Determination

n = ?

How large should the sample size be?

- Too large: Unethical and/or waste of resources
- Too small: High chance of inconclusive results
- ightarrow Accurately estimating sample size is crucial!

Sample Size Determination

n = ?

How large should the sample size be?

- Too large: Unethical and/or waste of resources
- Too small: High chance of inconclusive results
- → Accurately estimating sample size is crucial!

How to estimate sample size?

- "As ye shall analyse is as ye shall design" (Julious, 2023, p. 179)
- \rightarrow Design needs to take into account the planned analysis

Frequentist Hypothesis Testing

• **Closed-form solutions** for power and sample size of *z*-test:

$$1 - \beta = 1 - \Phi\left(\frac{z_{1-\alpha/2} - \mu + \theta_0}{2\sigma^2/n}\right) \quad \text{and} \quad n = \frac{2\sigma^2(z_{1-\alpha/2} + z_{1-\beta})^2}{(\mu - \theta_0)^2}$$

Frequentist Hypothesis Testing

• **Closed-form solutions** for power and sample size of *z*-test:

$$1 - \beta = 1 - \Phi\left(\frac{z_{1-\alpha/2} - \mu + \theta_0}{2\sigma^2/n}\right) \quad \text{and} \quad n = \frac{2\sigma^2(z_{1-\alpha/2} + z_{1-\beta})^2}{(\mu - \theta_0)^2}$$

Numerical solutions for many common tests:

```
power.t.test(...)
power.prop.test(...)
power.anova.test(...)
```

$$\mathsf{BF}_{01} = \frac{\mathsf{Pr}(H_0 \mid \mathsf{data})}{\mathsf{Pr}(H_1 \mid \mathsf{data})} \bigg/ \frac{\mathsf{Pr}(H_0)}{\mathsf{Pr}(H_1)} = \frac{p(\mathsf{data} \mid H_0)}{p(\mathsf{data} \mid H_1)}$$

$$\mathsf{BF}_{01} = \frac{\mathsf{Pr}(H_0 \mid \mathsf{data})}{\mathsf{Pr}(H_1 \mid \mathsf{data})} \bigg/ \frac{\mathsf{Pr}(H_0)}{\mathsf{Pr}(H_1)} = \frac{p(\mathsf{data} \mid H_0)}{p(\mathsf{data} \mid H_1)}$$

- Closed-form power for z-test Bayes factor (Weiss, 1997; De Santis, 2004)
 - ightarrow Relatively unknown among users of Bayes factors
 - ightarrow Not implemented in accessible software
 - ightarrow No closed-form sample size

$$\mathsf{BF}_{01} = \frac{\mathsf{Pr}(H_0 \mid \mathsf{data})}{\mathsf{Pr}(H_1 \mid \mathsf{data})} \bigg/ \frac{\mathsf{Pr}(H_0)}{\mathsf{Pr}(H_1)} = \frac{p(\mathsf{data} \mid H_0)}{p(\mathsf{data} \mid H_1)}$$

- Closed-form power for z-test Bayes factor (Weiss, 1997; De Santis, 2004)
 - ightarrow Relatively unknown among users of Bayes factors
 - ightarrow Not implemented in accessible software
 - ightarrow No closed-form sample size
- Monte Carlo simulation approaches (Gelfand and Wang, 2002; Schönbrodt and Wagenmakers, 2018)
 - → BFDA R package (Schönbrodt and Stefan, 2019)
 - \rightarrow Time-consuming, computationally expensive, non-deterministic
 - \rightarrow Less intuitive than a formula

$$\mathsf{BF}_{01} = \frac{\mathsf{Pr}(H_0 \mid \mathsf{data})}{\mathsf{Pr}(H_1 \mid \mathsf{data})} \bigg/ \frac{\mathsf{Pr}(H_0)}{\mathsf{Pr}(H_1)} = \frac{p(\mathsf{data} \mid H_0)}{p(\mathsf{data} \mid H_1)}$$

- Closed-form power for z-test Bayes factor (Weiss, 1997; De Santis, 2004)
 - ightarrow Relatively unknown among users of Bayes factors
 - ightarrow Not implemented in accessible software
 - ightarrow No closed-form sample size
- Monte Carlo simulation approaches (Gelfand and Wang, 2002; Schönbrodt and Wagenmakers, 2018)
 - \rightarrow BFDA R package (Schönbrodt and Stefan, 2019)
 - \rightarrow Time-consuming, computationally expensive, non-deterministic
 - \rightarrow Less intuitive than a formula
- ⇒ Reasons why Bayes factors rarely used by researchers?

This Talk

THE AMERICAN STATISTICIAN 2025, VOL. 79, NO. 3, 330–344: General https://doi.org/10.1080/00031305.2025.2467919

3 OPEN ACCESS

Closed-Form Power and Sample Size Calculations for Bayes Factors

Samuel Pawel o and Leonhard Held o

- Synthesize and extend previous results on closed-form power
- Derive **closed-form sample size** formulae for z-test Bayes factor
- Implement in R package bfpwr (doi.org/10.32614/CRAN.package.bfpwr)

- Parameter estimate $\hat{\theta}$ with standard error $\sigma_{\hat{\theta}}/\sqrt{n}$ where $\sigma_{\hat{\theta}}^2$ a unit variance and n the effective sample size
 - ightarrow Assume **approximate normality**: $\hat{ heta} \mid heta \sim \mathsf{N}(heta, \sigma_{\hat{ heta}}^2/n)$

- Parameter estimate $\hat{\theta}$ with standard error $\sigma_{\hat{\theta}}/\sqrt{n}$ where $\sigma_{\hat{\theta}}^2$ a unit variance and n the effective sample size
 - ightarrow Assume **approximate normality**: $\hat{ heta} \mid heta \sim \mathsf{N}(heta, \sigma_{\hat{ heta}}^2/n)$
- H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$

- Parameter estimate $\hat{\theta}$ with standard error $\sigma_{\hat{\theta}}/\sqrt{n}$ where $\sigma_{\hat{\theta}}^2$ a unit variance and n the effective sample size
 - ightarrow Assume **approximate normality**: $\hat{ heta} \mid heta \sim \mathsf{N}(heta, \sigma_{\hat{ heta}}^2/n)$
- H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$
- Normal prior for effect: $\theta \mid H_1 \sim \mathsf{N}(\mu, \tau^2)$

- Parameter estimate $\hat{\theta}$ with standard error $\sigma_{\hat{\theta}}/\sqrt{n}$ where $\sigma_{\hat{\theta}}^2$ a unit variance and n the effective sample size
 - ightarrow Assume **approximate normality**: $\hat{ heta} \mid heta \sim \mathsf{N}(heta, \sigma_{\hat{ heta}}^2/n)$
- H_0 : $\theta = \theta_0$ versus H_1 : $\theta \neq \theta_0$
- Normal prior for effect: $\theta \mid H_1 \sim \mathsf{N}(\mu, \tau^2)$
- Bayes factor

$$\mathsf{BF}_{01} = \sqrt{1 + \frac{n\tau^2}{\sigma_{\hat{\theta}}^2}} \exp\left[-\frac{1}{2} \left\{ \frac{(\hat{\theta} - \theta_0)^2}{\sigma_{\hat{\theta}}^2/n} - \frac{(\hat{\theta} - \mu)^2}{\tau^2 + \sigma_{\hat{\theta}}^2/n} \right\} \right]$$

 \rightarrow Point prior at μ when $\tau \downarrow$ 0 and Bayes factor becomes likelihood ratio

Types of Parameter Estimates

Outcome	Parameter estimate $\hat{ heta}$	Interpretation of n	Unit variance $\sigma_{\hat{\theta}}^2$
Continuous	Mean	Sample size	σ^2
Continuous	Mean difference	Sample size per group	$2\sigma^2$
Continuous	Standardized mean difference	Sample size per group	2
Continuous	z-transformed correlation	Sample size minus 3	1
Binary	Arcsine square root difference	Sample size per group	1/2
Binary	Log odds ratio	Total number of events	4
Survival	Log hazard ratio	Total number of events	4
Count	Log rate ratio	Total count	4

- Normal design prior $heta \sim {\sf N}(\mu_d, au_d^2)$
 - ightarrow not necessarily the same as analysis prior $heta \mid extstyle H_1 \sim extstyle \mathsf{N}(\mu, au^2)$

- Normal design prior $heta \sim \mathsf{N}(\mu_d, au_d^2)$
 - ightarrow not necessarily the same as analysis prior $heta \mid extstyle H_1 \sim extstyle \mathsf{N}(\mu, au^2)$
- Bayes factor threshold k, e.g., k = 1/10

- Normal design prior $heta \sim \mathsf{N}(\mu_d, au_d^2)$
 - ightarrow not necessarily the same as analysis prior $heta \mid H_1 \sim \mathsf{N}(\mu, au^2)$
- Bayes factor threshold k, e.g., k = 1/10
- Probability of evidence for H₁

$$\Pr(\mathsf{BF}_{01} \le k \mid \mu_d, \tau_d^2)$$

- ightarrow When $\mu_d= heta_0$ and $au_d\downarrow 0$ this is the frequentist **type I error rate**
- \rightarrow Otherwise the **(predictive) power**

- Normal design prior $heta \sim {\sf N}(\mu_d, au_d^2)$
 - \rightarrow not necessarily the same as analysis prior $\theta \mid H_1 \sim N(\mu, \tau^2)$
- Bayes factor threshold k, e.g., k = 1/10
- Probability of evidence for H₁

$$\Pr(\mathsf{BF}_{01} \le k \mid \mu_d, \tau_d^2)$$

- ightarrow When $\mu_d= heta_0$ and $au_d\downarrow 0$ this is the frequentist **type I error rate**
- → Otherwise the (predictive) power
- Probability of evidence for H₀

$$\Pr(\mathsf{BF_{01}} > k_0 \mid \mu_d, \tau_d^2)$$

- ightarrow Symmetric thresholds $k_0=1/k$
- \rightarrow When $\mu_d = \theta_0$ and $\tau_d \downarrow 0$ this is the "power for H_0 "

Closed-Form Power Functions

Normal analysis prior (Weiss, 1997; De Santis, 2004)

$$\Pr(\mathsf{BF}_{01} \le k \mid n, \mu_d, \tau_d, \boldsymbol{\tau} > \boldsymbol{0}) = \Phi(-\sqrt{X} - M) + \Phi(-\sqrt{X} + M)$$
with $M = \left\{ \mu_d - \theta_0 - \frac{\sigma_{\hat{\theta}}^2}{n\tau^2} (\theta_0 - \mu) \right\} \frac{1}{\sqrt{\tau_d^2 + \sigma_{\hat{\theta}}^2/n}},$

$$X = \left\{ \log \left(1 + \frac{n\tau^2}{\sigma_{\hat{\theta}}^2} \right) + \frac{(\theta_0 - \mu)^2}{\tau^2} - \log k^2 \right\} \left(1 + \frac{\sigma_{\hat{\theta}}^2}{n\tau^2} \right) \frac{\sigma_{\hat{\theta}}^2}{n\tau_d^2 + \sigma_{\hat{\theta}}^2}$$

Closed-Form Power Functions

• Normal analysis prior (Weiss, 1997; De Santis, 2004)

$$\Pr(\mathsf{BF}_{01} \le k \mid n, \mu_d, \tau_d, \boldsymbol{\tau} > \boldsymbol{0}) = \Phi(-\sqrt{X} - M) + \Phi(-\sqrt{X} + M)$$
with $M = \left\{ \mu_d - \theta_0 - \frac{\sigma_{\hat{\theta}}^2}{n\tau^2} (\theta_0 - \mu) \right\} \frac{1}{\sqrt{\tau_d^2 + \sigma_{\hat{\theta}}^2/n}},$

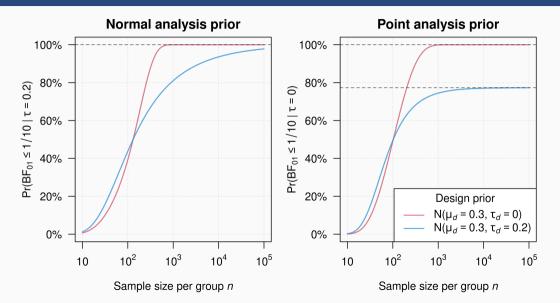
$$X = \left\{ \log \left(1 + \frac{n\tau^2}{\sigma_{\hat{\theta}}^2} \right) + \frac{(\theta_0 - \mu)^2}{\tau^2} - \log k^2 \right\} \left(1 + \frac{\sigma_{\hat{\theta}}^2}{n\tau^2} \right) \frac{\sigma_{\hat{\theta}}^2}{n\tau_d^2 + \sigma_{\hat{\theta}}^2}$$

Point analysis prior

$$\Pr(\mathsf{BF}_{01} \le k \mid n, \mu_d, \tau_d, \boldsymbol{\tau} = \mathbf{0}) = \begin{cases} 1 - \Phi(Z) & \text{if } \mu - \theta_0 > 0 \\ \Phi(Z) & \text{if } \mu - \theta_0 < 0 \end{cases}$$

with
$$Z = \frac{1}{\sqrt{\tau_d^2 + \sigma_{\hat{\theta}}^2/n}} \left\{ \frac{\sigma_{\hat{\theta}}^2 \log k}{n(\theta_0 - \mu)} + \frac{\theta_0 + \mu}{2} - \mu_d \right\}$$

Example Power Calculations



Availability of Closed-Form Sample Size

- Sample size can be easily computed with numerical root-finding
- Is there also a **closed-form solution**? YES, in some cases!

Availability of Closed-Form Sample Size

- Sample size can be easily computed with numerical root-finding
- Is there also a **closed-form solution**? YES, in some cases!

	Analysis prior	
Design prior	Point prior (likelihood ratio)	Normal prior (Bayes factor)
Point prior (conditional power)	✓	X
Normal prior (predictive power)	✓	✓ (for local normal priors)

General formula

$$n = \left[\left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \frac{\Delta_{\mu_d} \log k^2}{\Delta_{\mu}} + \left(\frac{\tau_d \log k^2}{\Delta_{\mu}} \right)^2} \right\}^2 - \left(\frac{\tau_d \log k^2}{\Delta_{\mu}} \right)^2 \right] \times \frac{\sigma_{\theta}^2}{\Delta_{\mu_d}^2 - 4z_{1-\beta}^2 \tau_d^2}$$

where $\Delta_{\mu_d} = 2\mu_d - \mu - heta_0$ is the generalized effect size

General formula

$$n = \left[\left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \frac{\Delta_{\mu_d} \log k^2}{\Delta_{\mu}} + \left(\frac{\tau_d \log k^2}{\Delta_{\mu}} \right)^2} \right\}^2 - \left(\frac{\tau_d \log k^2}{\Delta_{\mu}} \right)^2 \right] \times \frac{\sigma_{\theta}^2}{\Delta_{\mu_d}^2 - 4z_{1-\beta}^2 \tau_d^2}$$

where $\Delta_{\mu_d}=2\mu_d-\mu- heta_0$ is the generalized effect size

• Simplified formula assuming $\mu_d=\mu$ and $au_d=0$

$$n = \frac{\sigma_{\hat{\theta}}^2 \left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \log k^2} \right\}^2}{(\mu - \theta_0)^2}$$

General formula

$$n = \left[\left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \frac{\Delta_{\mu_d} \log k^2}{\Delta_{\mu}} + \left(\frac{\tau_d \log k^2}{\Delta_{\mu}} \right)^2} \right\}^2 - \left(\frac{\tau_d \log k^2}{\Delta_{\mu}} \right)^2 \right] \times \frac{\sigma_{\hat{\theta}}^2}{\Delta_{\mu_d}^2 - 4z_{1-\beta}^2 \tau_d^2}$$

where $\Delta_{\mu_d} = 2\mu_d - \mu - \theta_0$ is the generalized effect size

• Simplified formula assuming $\mu_d=\mu$ and $au_d=0$

$$n = \frac{\sigma_{\hat{\theta}}^2 \left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \log k^2} \right\}^2}{(\mu - \theta_0)^2}$$

ightarrow Related to frequentist sample size: $z_{1-lpha/2}$ replaced by $\sqrt{z_{1-eta}^2 - \log k^2}$

General formula

$$n = \left[\left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \frac{\Delta_{\mu_d} \log k^2}{\Delta_{\mu}} + \left(\frac{\tau_d \log k^2}{\Delta_{\mu}}\right)^2} \right\}^2 - \left(\frac{\tau_d \log k^2}{\Delta_{\mu}}\right)^2 \right] \times \frac{\sigma_{\hat{\theta}}^2}{\Delta_{\mu_d}^2 - 4z_{1-\beta}^2 \tau_d^2}$$

where $\Delta_{\mu_d} = 2\mu_d - \mu - \theta_0$ is the generalized effect size

• Simplified formula assuming $\mu_d=\mu$ and $au_d=0$

$$n = \frac{\sigma_{\hat{\theta}}^2 \left\{ z_{1-\beta} + \sqrt{z_{1-\beta}^2 - \log k^2} \right\}^2}{(\mu - \theta_0)^2}$$

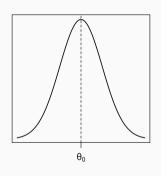
- ightarrow Related to frequentist sample size: $z_{1-lpha/2}$ replaced by $\sqrt{z_{1-eta}^2-\log k^2}$
- → Matches with **likelihoodist sample size** (Royall, 1997; Strug et al., 2007)
- → Enables **hybrid Bayesian-likelihoodist design**

Closed-Form Sample Size – Normal Analysis Prior (au>0)

• Assuming the same local analysis and design prior $(\mu = \mu_d = \theta_0 \text{ and } \tau_d = \tau)$ leads to

$$n = \frac{\sigma_{\hat{\theta}}^2}{\tau^2} \underbrace{k^2 \exp\left\{-W_{-1}(-k^2 z_{(1-\beta)/2}^2)\right\}}_{n_{k,\beta}}$$

with $W_{-1}(\cdot)$ the Lambert W function (Corless et al., 1996)

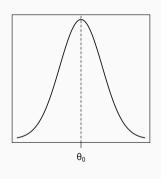


Closed-Form Sample Size – Normal Analysis Prior (au > 0)

• Assuming the same local analysis and design prior $(\mu = \mu_d = \theta_0 \text{ and } \tau_d = \tau)$ leads to

$$n = \frac{\sigma_{\hat{\theta}}^2}{\tau^2} \underbrace{k^2 \exp\left\{-W_{-1}(-k^2 z_{(1-\beta)/2}^2)\right\}}_{n_{k,\beta}}$$

with $W_{-1}(\cdot)$ the Lambert W function (Corless et al., 1996) \rightarrow Unit-information sample size $n_{k,\beta}$ for $\tau^2 = \sigma_{\hat{\theta}}^2$



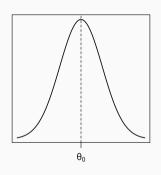
Closed-Form Sample Size – Normal Analysis Prior (au > 0)

• Assuming the same local analysis and design prior $(\mu = \mu_d = \theta_0 \text{ and } \tau_d = \tau)$ leads to

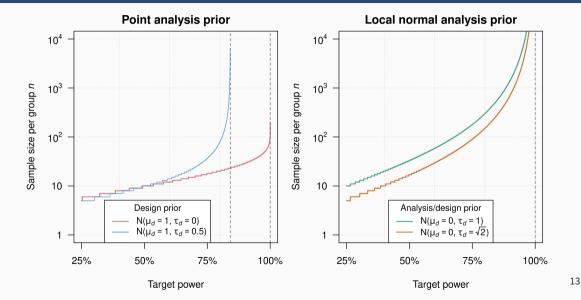
$$n = \frac{\sigma_{\hat{\theta}}^2}{\tau^2} \underbrace{k^2 \exp\left\{-W_{-1}(-k^2 z_{(1-\beta)/2}^2)\right\}}_{n_{k,\beta}}$$

with $W_{-1}(\cdot)$ the Lambert W function (Corless et al., 1996)

- ightarrow Unit-information sample size $n_{k,eta}$ for $au^2=\sigma_{\hat{ heta}}^2$
- → Local normal design prior may be **unrealistic** in practice



Closed-Form Sample Size Determination

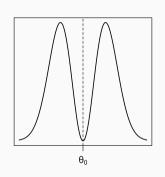


Extensions – Nonlocal Analysis Priors

• Normal moment prior (Johnson and Rossell, 2010)

$$p(\theta) = N(\theta \mid \theta_0, \tau^2) \times (\theta - \theta_0)^2 / \tau^2$$

 \rightarrow Faster accumulation of evidence for H_0

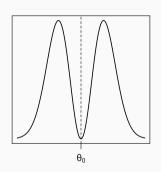


Extensions - Nonlocal Analysis Priors

• Normal moment prior (Johnson and Rossell, 2010)

$$p(\theta) = N(\theta \mid \theta_0, \tau^2) \times (\theta - \theta_0)^2 / \tau^2$$

- \rightarrow Faster accumulation of evidence for H_0
- Power available in closed-form
- Sample size computable with root-finding

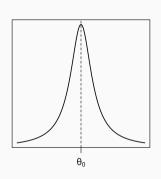


Extensions - Bayesian t-Test

• Truncated location-scale t prior (Gronau et al., 2020)

$$\mathsf{BF}_{01} = \frac{\mathsf{T}_{\nu}(t\mid 0,1)}{\int_{-\infty}^{+\infty}\mathsf{NCT}_{\nu}(t\mid \theta\sqrt{n})\,\mathsf{T}_{\kappa}(\theta\mid \mu,\tau)_{[a,b]}\,\mathsf{d}\theta}$$

→ Generalizes popular Jeffreys-Zellner-Siow BF

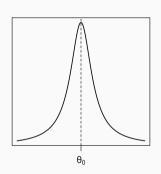


Extensions – Bayesian t-Test

• Truncated location-scale t prior (Gronau et al., 2020)

$$\mathsf{BF}_{01} = \frac{\mathsf{T}_{\nu}(t\mid 0,1)}{\int_{-\infty}^{+\infty}\mathsf{NCT}_{\nu}(t\mid \theta\sqrt{n})\,\mathsf{T}_{\kappa}(\theta\mid \mu,\tau)_{[a,b]}\,\mathsf{d}\theta}$$

- → Generalizes popular **Jeffreys-Zellner-Siow BF**
- Power and sample size computable with root-finding



Example: Bayesian t-Test (1)

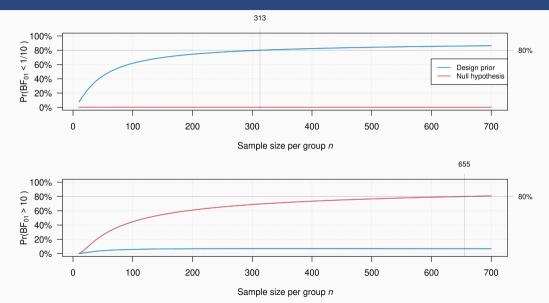
Example: Bayesian t-Test (2)

```
##
##
        Two-sample t-test Bayes factor power calculation
##
##
                               n = 312.1429
##
                           power = 0.8
##
                              sd = 1
                            null = 0
##
##
                     alternative = greater
##
         analysis prior location = 0
##
            analysis prior scale = 1
##
               analysis prior df = 1
##
               design prior mean = 0.5
##
                 design prior sd = 0.3
##
                  BF threshold k = 1/10
##
  NOTE: BF oriented in favor of HO (BF01 < 1 indicates evidence for H1 over HO)
##
         n is number of *observations per group*
##
         sd is standard deviation of one observation (assumed equal in both groups)
```

Example: Bayesian t-Test (3)

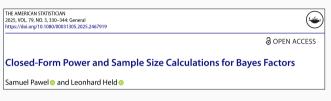
```
plot(result, nlim = c(10, 700))
```

Example: Bayesian t-Test (4)



19

Discussion



- Bayes factor power and sample size calculations can be done without simulation in many common settings
 - \rightarrow Fast, deterministic, requires no simulation parameters
 - \rightarrow More familar and easier to use for applied researchers
- Main limitation: Asymptotic normality assumption
 - → Student *t* likelihood (Wong and Tendeiro, 2025)
 - ightarrow Binomial likelihood (Kelter and Pawel, 2025)
- Still left to do: Sequential designs and multivariate parameters

References i

- Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E. (1996). On the Lambert W function. *Advances in Computational Mathematics*, 5(1):329–359. doi:10.1007/bf02124750.
- De Santis, F. (2004). Statistical evidence and sample size determination for Bayesian hypothesis testing. *Journal of Statistical Planning and Inference*, 124(1):121–144. doi:10.1016/S0378-3758(03)00198-8.
- Gelfand, A. E. and Wang, F. (2002). A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. *Statistical Science*, 17(2):193–208. doi:10.1214/ss/1030550861.
- Gronau, Q. F., Ly, A., and Wagenmakers, E.-J. (2020). Informed Bayesian *t*-tests. *The American Statistician*, 74(2):137–143. doi:10.1080/00031305.2018.1562983.
- Johnson, V. E. and Rossell, D. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 72(2):143–170. doi:10.1111/j.1467-9868.2009.00730.x.
- Julious, S. A. (2023). Sample Sizes for Clinical Trials. Wiley, Chichester, 2nd edition.
- Kelter, R. and Pawel, S. (2025). Bayesian power and sample size calculations for Bayes factors in the binomial setting. doi:10.48550/ARXIV.2502.02914. arXiv preprint.

References ii

- Pawel, S. and Held, L. (2025). Closed-form power and sample size calculations for Bayes factors. *The American Statistician*, 79(3):330–344. doi:10.1080/00031305.2025.2467919.
- Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, London New York.
- Schönbrodt, F. D. and Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence. *Psychonomic Bulletin & Review*, 25(1):128–142. doi:10.3758/s13423-017-1230-y.
- Schönbrodt, F. D. and Stefan, A. M. (2019). BFDA: An R package for Bayes factor design analysis (version 0.5.0). URL https://github.com/nicebread/BFDA.
- Strug, L. J., Rohde, C. A., and Corey, P. N. (2007). An introduction to evidential sample size calculations. *The American Statistician*, 61(3):207–212. doi:10.1198/000313007x222488.
- Weiss, R. (1997). Bayesian sample size calculations for hypothesis testing. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 46(2):185–191. doi:10.1111/1467-9884.00075.
- Wong, T. K. and Tendeiro, J. N. (2025). On a generalizable approach for sample size determination in Bayesian t tests. Behavior Research Methods, 57(5). doi:10.3758/s13428-025-02654-x.