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Sample Size Determination

n =?

How large should the sample size be?

• Too large: Unethical and/or waste of resources
• Too small: High chance of inconclusive results

→ Accurately estimating sample size is crucial!

How to estimate sample size?

• “As ye shall analyse is as ye shall design” (Julious, 2023, p. 179)
→ Design needs to take into account the planned analysis
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Frequentist Hypothesis Testing

• Closed-form solutions for power and sample size of z-test:

1 − β = 1 − Φ

(
z1−α/2 − µ+ θ0

2σ2/n

)
and n =

2σ2(z1−α/2 + z1−β)
2

(µ− θ0)2

• Numerical solutions for many common tests:

power.t.test(...)
power.prop.test(...)
power.anova.test(...)
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Bayes Factor Hypothesis Testing

BF01 =
Pr(H0 | data)
Pr(H1 | data)

/
Pr(H0)

Pr(H1)
=
p(data | H0)

p(data | H1)

• Closed-form power for z-test Bayes factor (Weiss, 1997; De Santis, 2004)
→ Relatively unknown among users of Bayes factors
→ Not implemented in accessible software
→ No closed-form sample size

• Monte Carlo simulation approaches (Gelfand and Wang, 2002;
Schönbrodt and Wagenmakers, 2018)
→ BFDA R package (Schönbrodt and Stefan, 2019)
→ Time-consuming, computationally expensive, non-deterministic
→ Less intuitive than a formula

⇒ Reasons why Bayes factors rarely used by researchers?
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This Talk

• Synthesize and extend previous results on closed-form power

• Derive closed-form sample size formulae for z-test Bayes factor
• Implement in R package bfpwr (doi.org/10.32614/CRAN.package.bfpwr)
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z-test Bayes Factor

• Parameter estimate θ̂ with standard error σθ̂/
√
nwhere σ2

θ̂
a unit

variance and n the effective sample size
→ Assume approximate normality: θ̂ | θ ∼ N(θ, σ2

θ̂
/n)

• H0 : θ = θ0 versus H1 : θ ̸= θ0

• Normal prior for effect: θ | H1 ∼ N(µ, τ 2)

• Bayes factor

BF01 =

√
1 +

nτ 2

σ2
θ̂

exp

[
−1

2

{
(θ̂ − θ0)

2

σ2
θ̂
/n

− (θ̂ − µ)2

τ 2 + σ2
θ̂
/n

}]

→ Point prior at µ when τ ↓ 0 and Bayes factor becomes likelihood ratio
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Types of Parameter Estimates

Outcome Parameter estimate θ̂ Interpretation of n Unit variance σ2
θ̂

Continuous Mean Sample size σ2

Continuous Mean difference Sample size per group 2σ2

Continuous Standardized mean difference Sample size per group 2

Continuous z-transformed correlation Sample size minus 3 1

Binary Arcsine square root difference Sample size per group 1/2

Binary Log odds ratio Total number of events 4

Survival Log hazard ratio Total number of events 4

Count Log rate ratio Total count 4

Parameters based on two groups assume equal allocation
6



Power Calculations for the z-test Bayes Factor

• Normal design prior θ ∼ N(µd, τ
2
d )

→ not necessarily the same as analysis prior θ | H1 ∼ N(µ, τ 2)

• Bayes factor threshold k, e.g., k = 1/10
• Probability of evidence for H1

Pr(BF01 ≤ k | µd, τ 2
d )

→ When µd = θ0 and τd ↓ 0 this is the frequentist type I error rate
→ Otherwise the (predictive) power

• Probability of evidence for H0

Pr(BF01 > k0 | µd, τ 2
d )

→ Symmetric thresholds k0 = 1/k
→ When µd = θ0 and τd ↓ 0 this is the “power for H0”
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Closed-Form Power Functions

• Normal analysis prior (Weiss, 1997; De Santis, 2004)

Pr(BF01 ≤ k | n, µd, τd, τ > 0) = Φ(−
√
X − M) + Φ(−

√
X + M)

withM =

{
µd − θ0 −

σ2
θ̂

nτ 2 (θ0 − µ)

}
1√

τ 2
d+σ2

θ̂
/n
,

X =

{
log

(
1 + nτ 2

σ2
θ̂

)
+ (θ0−µ)2

τ 2 − log k2
}(

1 +
σ2
θ̂

nτ 2

)
σ2
θ̂

nτ 2
d+σ2

θ̂

• Point analysis prior

Pr(BF01 ≤ k | n, µd, τd, τ = 0) =

1 − Φ(Z) if µ− θ0 > 0
Φ(Z) if µ− θ0 < 0

with Z = 1√
τ 2
d+σ2

θ̂
/n

{
σ2
θ̂
log k

n(θ0−µ)
+ θ0+µ

2 − µd

}
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Example Power Calculations
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Availability of Closed-Form Sample Size

• Sample size can be easily computed with numerical root-finding

• Is there also a closed-form solution? YES, in some cases!

Analysis prior

Design prior Point prior (likelihood ratio) Normal prior (Bayes factor)

Point prior (conditional power) ✓ ✗

Normal prior (predictive power) ✓ ✓ (for local normal priors)
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Closed-Form Sample Size – Point Analysis Prior (τ = 0)

• General formula

n =


z1−β +

√
z2

1−β − ∆µd log k2

∆µ
+

(
τd log k2

∆µ

)2


2

−
(
τd log k2

∆µ

)2
× σ2

θ̂

∆2
µd

− 4z2
1−βτ

2
d

where ∆µd = 2µd − µ− θ0 is the generalized effect size

• Simplified formula assuming µd = µ and τd = 0

n =
σ2

θ̂

{
z1−β +

√
z2

1−β − log k2
}2

(µ− θ0)2

→ Related to frequentist sample size: z1−α/2 replaced by
√
z2

1−β − log k2

→ Matches with likelihoodist sample size (Royall, 1997; Strug et al., 2007)
→ Enables hybrid Bayesian-likelihoodist design
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Closed-Form Sample Size – Normal Analysis Prior (τ > 0)

• Assuming the same local analysis and design prior
(µ = µd = θ0 and τd = τ ) leads to

n =
σ2

θ̂

τ 2 k2 exp
{
−W−1(−k2 z2

(1−β)/2)
}︸ ︷︷ ︸

nk,β

with W−1(·) the Lambert W function (Corless et al., 1996)

→ Unit-information sample size nk,β for τ 2 = σ2
θ̂

→ Local normal design prior may be unrealistic in practice
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Closed-Form Sample Size Determination
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Extensions – Nonlocal Analysis Priors

• Normal moment prior (Johnson and Rossell, 2010)

p(θ) = N(θ | θ0, τ
2)× (θ − θ0)

2/τ 2

→ Faster accumulation of evidence for H0

• Power available in closed-form

• Sample size computable with root-finding
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Extensions – Bayesian t-Test

• Truncated location-scale t prior (Gronau et al., 2020)

BF01 =
Tν(t | 0, 1)∫ +∞

−∞ NCTν(t | θ
√
n) Tκ(θ | µ, τ)[a,b] dθ

→ Generalizes popular Jeffreys-Zellner-Siow BF

• Power and sample size computable with root-finding
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Example: Bayesian t-Test (1)

install.packages("bfpwr")
library("bfpwr")
result <- powertbf01(power = 0.8, k = 1/10, plocation = 0,

pscale = 1, pdf = 1, dpm = 0.5,
dpsd = 0.3, alternative = "greater")

result

16



Example: Bayesian t-Test (2)

##
## Two-sample t-test Bayes factor power calculation
##
## n = 312.1429
## power = 0.8
## sd = 1
## null = 0
## alternative = greater
## analysis prior location = 0
## analysis prior scale = 1
## analysis prior df = 1
## design prior mean = 0.5
## design prior sd = 0.3
## BF threshold k = 1/10
##
## NOTE: BF oriented in favor of H0 (BF01 < 1 indicates evidence for H1 over H0)
## n is number of *observations per group*
## sd is standard deviation of one observation (assumed equal in both groups)

17



Example: Bayesian t-Test (3)

plot(result, nlim = c(10, 700))

18



Example: Bayesian t-Test (4)

19



Discussion

• Bayes factor power and sample size calculations can be done without
simulation in many common settings
→ Fast, deterministic, requires no simulation parameters
→ More familar and easier to use for applied researchers

• Main limitation: Asymptotic normality assumption
→ Student t likelihood (Wong and Tendeiro, 2025)
→ Binomial likelihood (Kelter and Pawel, 2025)

• Still left to do: Sequential designs and multivariate parameters 20
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