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Gaussian SEMs and DAG Models

Suppose we have observations from a g-variate Gaussian random variable X, generated
by a linear Gaussian Structural Equation Model (SEM) of the form

X=B"X+¢ e¢~N(0,D) (1)

where B is a (g, q) matrix s.t. B;; # 0 iff i = j € D, with D a Directed Acyclic Graph
(DAG) and D a (q,q) diagonal matrix of node variances
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where B is a (g, q) matrix s.t. B;; # 0 iff i = j € D, with D a Directed Acyclic Graph
(DAG) and D a (q,q) diagonal matrix of node variances

The linear SEM induces a Gaussian DAG model on X, i.e.
X ~NO,L7TDL™)

where L = I, — B and the joint pdf factorises according to the Markov property of D:

q
f(z) = H dN (:E]'; —Lz;aj(p)’jl'paj(p), Djj) , where pa;(D) = {i:i— j € D}
Jj=1



Causal effects: definition and identification

We are interested in estimating the total causal effect 7, of a treatment variable X; on
an outcome variable X,. Using the language of the do-calculus

_ OE[X, | do(X; = 3y)]
Tto = 074 (2)
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_ OE[X, | do(X; = 3y)]
Tto = 074 (2)

I The numerator Equation 2 requires a marginalization over a post-intervention
distribution that we do not observe;
If D is known, it is possible to identify a valid adjustment set z C [q] s.t. {t,0} ¢ z and

E(X, | do(X; = &) = Bo + Trodit + BLE(X.) (3)

i.e. Ty, corresponds to a regression coefficient in a specific regression model!



Causal effects: Example
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If we are interested in 74¢ possible valid adjustment sets are
z1 = {17273}722 = {173}723 = {273}72:4 = {1}7Z5 - {2}



Causal effects: Example
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If we are interested in 74¢ possible valid adjustment sets are

21 = {1,2,3},22 = {1,3},23 = {2,3},2’4 = {1},2’5 = {2}

All these valid adjustment sets would provide an unbiased estimate of the total causal
effect of interest. However, the correspoding estimator may have different properties;



Causal effects: estimation

The regression coefficient in (3) can be very easily estimated via OLS.



Causal effects: estimation

The regression coefficient in (3) can be very easily estimated via OLS.
Alternatively, in the Gaussian case, one may also

i) Obtain an estimate (L, D) via MLE

ii) Derive the MLE of the covariance function of the Gaussian DAG as

iii) Compute the MLE of 7, as

where z* =tU z and z



Causal effects: Best Valid Adjustment set
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Henckel et al. (2022): graphical characterization of best valid adjustment set
Oto(D) as the one minimising asymptotic variance of the corresponding OLS estimator:

O16(D) = pap (medp (X, Xo) U X,) \{ X Umedp (X, X,)}
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Henckel et al. (2022): graphical characterization of best valid adjustment set
Oto(D) as the one minimising asymptotic variance of the corresponding OLS estimator:

O16(D) = pap (medp (X, Xo) U X,) \{ X Umedp (X, X,)}

In our example, O46(D) = {2,3}



Causal effects: unknown causal structure

If D is not known, one may:
i) Learn D from data using a causal discovery algorithm such as the PC-algorithm;
ii) ldentify a valid adjustment set from the learnt DAG, and use it to estimate 7y,;

Problem: Causal discovery algorithm return Markov equivalence classes of DAGs
Solution: Enumerate all the possible causal effects compatible with the Markov
equivalence class (IDA, Maathuis et al. 2009)



Causal effects: unknown causal structure

If D is not known, one may:
i) Learn D from data using a causal discovery algorithm such as the PC-algorithm;
ii) ldentify a valid adjustment set from the learnt DAG, and use it to estimate 7y,;

Problem: Causal discovery algorithm return Markov equivalence classes of DAGs
Solution: Enumerate all the possible causal effects compatible with the Markov
equivalence class (IDA, Maathuis et al. 2009)

I This approach would still not account for the uncertainty in the estimation of the
Markov equivalence class —- Bayesian approaches



Bayesian Causal Discovery and Causal Effect Estimation

In the Bayesian setting, causal discovery can be tackled as a Bayesian Model Selection
task, and causal effect estimation under DAG uncertainty as a Bayesian Model Averaging
(BMA) estimation problem;
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interested in the posterior distribution
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Bayesian Causal Discovery and Causal Effect Estimation

In the Bayesian setting, causal discovery can be tackled as a Bayesian Model Selection
task, and causal effect estimation under DAG uncertainty as a Bayesian Model Averaging
(BMA) estimation problem;

Let X be a (n,q) matrix of observations from a causal Gaussian DAG Model. We are
interested in the posterior distribution

p((L, D), D|X) = p(L, D|D, X)p(D|X) (4)

As the causal effect is a function of the parameters, by sampling from the posterior
distribution (4), we can also approximate the posterior distribution over 74, and hence
obtain a BMA estimate of 7.



Bayesian Causal Discovery: A simple model

A typical model for Bayesian causal effect estimation under DAG uncertainty in the
Gaussian setting is the following:

X;|(L, D), D~ N, (0,L"DL™") i€ [n]
(L, D)|D ~ DAG-Wishart(a(D),U)
p(D) ox wISol(1 — ) L5150l

where the DAG-Wishart prior (Ben-David, 2015) is a prior on the Cholesky space of a
DAG D, with hyperparameters a(D) = (a1(D),...,aq(D)) and a (g,q) s.p.d. matrix U,
while w € (0, 1) is a prior probability of edge inclusion.



DAG-Wishart prior: properties

The DAG-Wishart prior has many useful properties:

® |t's conjugate, so that
p(L, D| X, D) ~ DAG-Wishart (a(D) +n,U + X" X)

Its marginal likelihood p(X |D) is available in closed form and decomposable

Sampling from p(L, D| X, D occurs by direct sampling.

¢ Nice selection consistency properties in high-dimensions (Cao et al. 2019);

The hyperparameters can be chosen in a way that guarantees score equivalence,
i.e. that Markov equivalent DAGs are assigned the same marginal likelihood (Peluso
& Consonni, 2020);
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i.e. that Markov equivalent DAGs are assigned the same marginal likelihood (Peluso

& Consonni, 2020);



DAG-Wishart prior on causal effects

When doing causal inference, our ultimate goal is testing or estimating causal effects
The DAG-Wishart is a distribution over the non-null elements of the matrices (L, D),
but causal effects are identified as DAG-specific functions of these parameters;
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The DAG-Wishart is a distribution over the non-null elements of the matrices (L, D),
but causal effects are identified as DAG-specific functions of these parameters;

= When evaluating different DAGs, we have very little control over the prior that we
specify on the causal effect of interest!
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Figure: In the first DAG, 746 = L4s5Ls¢ — Lye, in the second 746 = LusLse
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Solution: Novel parameterization, the I-MAP parameterization, which always contains
a single parameter corresponding to the total causal effect of interest;



The I-MAP parameterization



Minimal Independence M APs: Constructive procedure

Suppose X is a Gaussian g-variate random vector and let 7 be an ordering of the
variables. For any 7, the joint pdf can be written as

() = [T f(zjlzam)
j=1

where a,;(7) denotes all the variables that precede j in T;
If X is Markov w.r.t. to a DAG D, then a set of conditional independencies Z(D) holds,
and for each j we can cancel out conditionally indep. variables from a;(7), so that

s}

H .’E]|l‘s D7r Sj(DvTr) - a’j(ﬂ-)

Def: A Minimal Independence Map (I-MAP) is the DAG D} obtained by drawing, for
each j € [p] an edge k — j if k € S;(D, )



Minimal Independence M APs: Example

Suppose that our random vector X is Markov w.r.t to the following DAG, implying only

that X7 L X3 | Xo:

If we consider the two orderings m1 = X1 < X9 < X3 and m = X1 < X3 < X5, we

obtain the following minimal I-MAPs:
Dr, D,



Minimal I-MAPs: Comments

Different orderings imply different Minimal I-MAPs;

If 7 is topological of D (i.e., if i — j € D implies that i < j (i precedes j) in 7), then
the Minimal I-MAP corresponds to the data-generating DAG;

Otherwise it is a strictly denser DAG whose Markov property implies a subset of the
conditional independencies originally implied by the DAG;
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permuting the rows and column of ¥p according to the ordering 7, and then computing
the LDL decomposition of the permuted covariance matrix

If 7 is not topological of D, the I-MAP parameters (L., D) will have a strictly larger
number of non-null elements, but the free parameters will be the same;



Minimal I-MAPs: Comments

Different orderings imply different Minimal I-MAPs;

If 7 is topological of D (i.e., if i — j € D implies that i < j (i precedes j) in 7), then
the Minimal I-MAP corresponds to the data-generating DAG;

Otherwise it is a strictly denser DAG whose Markov property implies a subset of the
conditional independencies originally implied by the DAG;

In the Gaussian case, one can obtain the parameters of the minimal I-MAP (L, D) by
permuting the rows and column of ¥p according to the ordering 7, and then computing
the LDL decomposition of the permuted covariance matrix

If 7 is not topological of D, the I-MAP parameters (L., D) will have a strictly larger
number of non-null elements, but the free parameters will be the same;

Our I-MAP Parameterization involves the free parameters of a specific minimal I-MAP



I-MAP constraints: Example

Let's consider again the 3-nodes DAG and its minimal I-MAP for ms:

D DI,

L3
Liy Los @

For the minimal I-MAP to represent the same model as the D, it must hold that

= _IN-/13D22

L3y =
Li5D33



The Optimal I-MAP: Definition

Let

D be such that the treatment node X; is an ancestor of the outcome node X;

7 be an ordering of the variables such that (i) 7*

is topological of D and (ii) X}
and X, are separated only by their mediators;

7 be the ordering obtained from a topological ordering 7 and moving all the
mediators of X; and X, after X, preserving their relative ordering relation

We call D := D% the optimal I-MAP of D. It holds that

pap(X,) = 2 = O(X, X, D) and L, 5, =—(25:)7"2z,

The parameter of the edge t — o € D corresponds to the total causal effect of interest;



The Optimal I-MAP: Example

D D
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When interested in 746 the Optimal I-MAP includes the best valid adjustment set
z* ={4,2,3} as the parent set of the outcome node, and Ly is the corresponding
parameter in the I-MAP parameterization;



I-M AP Parameterization: Further technical results

We fully characterise the connection between the canonical Gaussian DAG Model
parameterization and our I-MAP parameterization.

We developed a fast procedure that transform the parameters (L, D) of a Gaussian DAG
Model into the corresponding parameters of the I-MAP parameterization, using only

m := |medp(t,0)| steps of Gaussian elimination.

The same procedure can be also used in computer algebra systems to derive the
constraints that hold among the parameters of the I-MAP parameterization.



I-M AP Parameterization: Further technical results

We fully characterise the connection between the canonical Gaussian DAG Model
parameterization and our I-MAP parameterization.

We developed a fast procedure that transform the parameters (L, D) of a Gaussian DAG
Model into the corresponding parameters of the I-MAP parameterization, using only

m := |medp(t,0)| steps of Gaussian elimination.

The same procedure can be also used in computer algebra systems to derive the
constraints that hold among the parameters of the I-MAP parameterization.

In practice, identifying the constraints of the I-MAP parameterization remains quite
inconvenient;



Bayesian Model Specification on the I-MAP

The statistical model can be written as
X | EDap NN(Oaz'D)
Sp=L "DL!

The parameter prior must then be defined only on the free-parameters of the I-MAP
parameterization. For instance, in the simplest case, we may specify for any j € [¢] and
any pair 4, j such that L;; is a free parameter:

i/ij | D NN(O,U%)
[)jj | D ~ Inv-Gamma(vy/2, 1900 /2)

The DAG prior can be specified as before



Bayesian Model Specification: Comments

Because of the constraints holding among the parameters of the -MAP parameterization,
computing the marginal likelihood becomes a difficult task;

Solution: We propose to use a Laplace approximation centered on the MLE of the
~ MLE

I-MAP (iMLE,D ), leading to a BIC-style approximation of the marginal likelihood;
As deriving the said constraints is computationally costly, even evaluating the likelihood
and deriving the MLE can be difficult

We thus first estimate the MLE of the DAG parameters (L, D) and then use our Gaussian
~MLE ~MLE

elimination procedure to derive (L™, D" ) by the invariance property of MLE;
Similarly, sampling from the posterior p(f), b\X,D) occurs via Importance Sampling, by
first sampling from a DAG-Wishart distribution and then resampling the transformed
samples with weights given by the two priors ratio;



Conclusions

® \We propose an alternative parameterization of Gaussian DAG Models, the I-MAP
parameterization, that always contains a causal effect of interest as a single
parameter;

® Qur parameterization allows for full control over the specification over the prior
distribution on the causal effect of interest in a Bayesian setting;

® As the I-MAP parameterization involves constraints among the parameters, we
developed both a procedure to (more easily) derive those constraints, and a
procedure to quickly transform the parameters of a Gaussian DAG model in the
typical parameterization to the ones of the I-MAP parameterization;

® The second procedure can be used to both derive an approximation to the marginal
likelihood and to sample from the posterior distribution over the parameters.

® As numerical experiments are still unsatisfactory, we are currently exploring new
possibilities for the approximation of the marginal likelihood



Thank youl!
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