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Gaussian SEMs and DAG Models
Suppose we have observations from a q-variate Gaussian random variable X, generated
by a linear Gaussian Structural Equation Model (SEM) of the form

X = BT X + ϵ, ϵ ∼ N (0, D) (1)

where B is a (q, q) matrix s.t. Bij ̸= 0 iff i → j ∈ D, with D a Directed Acyclic Graph
(DAG) and D a (q, q) diagonal matrix of node variances

The linear SEM induces a Gaussian DAG model on X, i.e.

X ∼ N (0, L−T DL−1)

where L = Iq − B and the joint pdf factorises according to the Markov property of D:

f(x) =
q∏

j=1
dN

(
xj ; −LT

paj(D),jxpaj(D), Djj

)
, where paj(D) = {i : i → j ∈ D}
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Causal effects: definition and identification

We are interested in estimating the total causal effect τto of a treatment variable Xt on
an outcome variable Xo. Using the language of the do-calculus

τto := ∂E [Xo | do(Xt = x̃t)]
∂x̃t

(2)

! The numerator Equation 2 requires a marginalization over a post-intervention
distribution that we do not observe;
If D is known, it is possible to identify a valid adjustment set z ⊂ [q] s.t. {t, o} /∈ z and

E(Xo | do(Xt = x̃t) = β0 + τtox̃t + βT
zoE(Xz) (3)

i.e. τto corresponds to a regression coefficient in a specific regression model!
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Causal effects: Example

X1

X4

X2

X5 X6

X3

If we are interested in τ46 possible valid adjustment sets are
z1 = {1, 2, 3}, z2 = {1, 3}, z3 = {2, 3}, z4 = {1}, z5 = {2}

All these valid adjustment sets would provide an unbiased estimate of the total causal
effect of interest. However, the correspoding estimator may have different properties;
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Causal effects: estimation

The regression coefficient in (3) can be very easily estimated via OLS.

Alternatively, in the Gaussian case, one may also
i) Obtain an estimate (L̂, D̂) via MLE
ii) Derive the MLE of the covariance function of the Gaussian DAG as

Σ̂ = L̂
−T

D̂L̂
−1

iii) Compute the MLE of τto as

τ̂to = (Σ̂z∗,z∗)−1Σ̂z∗,o

where z∗ = t ∪ z and z
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Causal effects: Best Valid Adjustment set

X1

X4

X2

X5 X6

X3

Henckel et al. (2022): graphical characterization of best valid adjustment set
Oto(D) as the one minimising asymptotic variance of the corresponding OLS estimator:

Oto(D) = paD (medD(Xt, Xo) ∪ Xo) \{Xt ∪ medD(Xt, Xo)}

In our example, O46(D) = {2, 3}
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Causal effects: unknown causal structure

If D is not known, one may:
i) Learn D from data using a causal discovery algorithm such as the PC-algorithm;
ii) Identify a valid adjustment set from the learnt DAG, and use it to estimate τto;

Problem: Causal discovery algorithm return Markov equivalence classes of DAGs
Solution: Enumerate all the possible causal effects compatible with the Markov
equivalence class (IDA, Maathuis et al. 2009)

! This approach would still not account for the uncertainty in the estimation of the
Markov equivalence class =⇒ Bayesian approaches
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Bayesian Causal Discovery and Causal Effect Estimation

In the Bayesian setting, causal discovery can be tackled as a Bayesian Model Selection
task, and causal effect estimation under DAG uncertainty as a Bayesian Model Averaging
(BMA) estimation problem;

Let X be a (n, q) matrix of observations from a causal Gaussian DAG Model. We are
interested in the posterior distribution

p((L, D), D|X) = p(L, D|D, X)p(D|X) (4)

As the causal effect is a function of the parameters, by sampling from the posterior
distribution (4), we can also approximate the posterior distribution over τto and hence
obtain a BMA estimate of τ .

A. Mascaro The I-MAP Parameterization of Gaussian DAG-models Sep 7, 2025 9/26



Bayesian Causal Discovery and Causal Effect Estimation

In the Bayesian setting, causal discovery can be tackled as a Bayesian Model Selection
task, and causal effect estimation under DAG uncertainty as a Bayesian Model Averaging
(BMA) estimation problem;
Let X be a (n, q) matrix of observations from a causal Gaussian DAG Model. We are
interested in the posterior distribution

p((L, D), D|X) = p(L, D|D, X)p(D|X) (4)

As the causal effect is a function of the parameters, by sampling from the posterior
distribution (4), we can also approximate the posterior distribution over τto and hence
obtain a BMA estimate of τ .

A. Mascaro The I-MAP Parameterization of Gaussian DAG-models Sep 7, 2025 9/26



Bayesian Causal Discovery and Causal Effect Estimation

In the Bayesian setting, causal discovery can be tackled as a Bayesian Model Selection
task, and causal effect estimation under DAG uncertainty as a Bayesian Model Averaging
(BMA) estimation problem;
Let X be a (n, q) matrix of observations from a causal Gaussian DAG Model. We are
interested in the posterior distribution

p((L, D), D|X) = p(L, D|D, X)p(D|X) (4)

As the causal effect is a function of the parameters, by sampling from the posterior
distribution (4), we can also approximate the posterior distribution over τto and hence
obtain a BMA estimate of τ .

A. Mascaro The I-MAP Parameterization of Gaussian DAG-models Sep 7, 2025 9/26



Bayesian Causal Discovery: A simple model

A typical model for Bayesian causal effect estimation under DAG uncertainty in the
Gaussian setting is the following:

Xi.|(L, D), D ∼ Nq

(
0, L−T DL−1

)
i ∈ [n]

(L, D)|D ∼ DAG-Wishart(a(D), U)

p(D) ∝ ω|SD|(1 − ω)
q(q−1)

2 −|SD|

where the DAG-Wishart prior (Ben-David, 2015) is a prior on the Cholesky space of a
DAG D, with hyperparameters a(D) = (a1(D), . . . , aq(D)) and a (q, q) s.p.d. matrix U ,
while ω ∈ (0, 1) is a prior probability of edge inclusion.
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DAG-Wishart prior: properties

The DAG-Wishart prior has many useful properties:
• It’s conjugate, so that

p(L, D|X, D) ∼ DAG-Wishart
(
a(D) + n, U + XT X

)
• Its marginal likelihood p(X|D) is available in closed form and decomposable
• Sampling from p(L, D|X, D occurs by direct sampling.
• Nice selection consistency properties in high-dimensions (Cao et al. 2019);
• The hyperparameters can be chosen in a way that guarantees score equivalence,

i.e. that Markov equivalent DAGs are assigned the same marginal likelihood (Peluso
& Consonni, 2020);

A. Mascaro The I-MAP Parameterization of Gaussian DAG-models Sep 7, 2025 11/26



DAG-Wishart prior: properties

The DAG-Wishart prior has many useful properties:
• It’s conjugate, so that

p(L, D|X, D) ∼ DAG-Wishart
(
a(D) + n, U + XT X

)
• Its marginal likelihood p(X|D) is available in closed form and decomposable
• Samples from p(L, D|X, D) can be obtained by direct sampling.
• Nice selection consistency properties in high-dimensions (Cao et al. 2019);
• The hyperparameters can be chosen in a way that guarantees score equivalence,

i.e. that Markov equivalent DAGs are assigned the same marginal likelihood (Peluso
& Consonni, 2020);

A. Mascaro The I-MAP Parameterization of Gaussian DAG-models Sep 7, 2025 12/26



DAG-Wishart prior on causal effects
When doing causal inference, our ultimate goal is testing or estimating causal effects
The DAG-Wishart is a distribution over the non-null elements of the matrices (L, D),
but causal effects are identified as DAG-specific functions of these parameters;

=⇒ When evaluating different DAGs, we have very little control over the prior that we
specify on the causal effect of interest!

1

4

2

5 6

3 1

4

2

5 6

3

Figure: In the first DAG, τ46 = L45L56 − L46, in the second τ46 = L45L56

Solution: Novel parameterization, the I-MAP parameterization, which always contains
a single parameter corresponding to the total causal effect of interest;
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The I-MAP parameterization



Minimal Independence MAPs: Constructive procedure
Suppose X is a Gaussian q-variate random vector and let π be an ordering of the
variables. For any π, the joint pdf can be written as

f(x) =
q∏

j=1
f(xj |xaj(π))

where aj(π) denotes all the variables that precede j in π;
If X is Markov w.r.t. to a DAG D, then a set of conditional independencies I(D) holds,
and for each j we can cancel out conditionally indep. variables from aj(π), so that

f(x) =
q∏

j=1
f(xj |xSj(D,π)) Sj(D, π) ⊆ aj(π)

Def: A Minimal Independence Map (I-MAP) is the DAG D∗
π obtained by drawing, for

each j ∈ [p] an edge k → j if k ∈ Sj(D, π)
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Minimal Independence MAPs: Example
Suppose that our random vector X is Markov w.r.t to the following DAG, implying only
that X1 ⊥ X3 | X2:

X1 X2 X3

If we consider the two orderings π1 = X1 ≺ X2 ≺ X3 and π2 = X1 ≺ X3 ≺ X2, we
obtain the following minimal I-MAPs:

D∗
π1 D∗

π2

X1 X2

4

X3

X1 X3

X2
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Minimal I-MAPs: Comments

Different orderings imply different Minimal I-MAPs;
If π is topological of D (i.e., if i → j ∈ D implies that i ≺ j (i precedes j) in π), then
the Minimal I-MAP corresponds to the data-generating DAG;
Otherwise it is a strictly denser DAG whose Markov property implies a subset of the
conditional independencies originally implied by the DAG;

In the Gaussian case, one can obtain the parameters of the minimal I-MAP (Lπ, Dπ) by
permuting the rows and column of ΣD according to the ordering π, and then computing
the LDL decomposition of the permuted covariance matrix
If π is not topological of D, the I-MAP parameters (Lπ, Dπ) will have a strictly larger
number of non-null elements, but the free parameters will be the same;

Our I-MAP Parameterization involves the free parameters of a specific minimal I-MAP
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I-MAP constraints: Example
Let’s consider again the 3-nodes DAG and its minimal I-MAP for π2:

D D∗
π2

X1 X2
L12

4

X3
L23

X1 X3
L̃13

X2

L̃12 L̃32

For the minimal I-MAP to represent the same model as the D, it must hold that

L̃32 = −L̃13D̃22

L̃12D̃33
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The Optimal I-MAP: Definition

Let
• D be such that the treatment node Xt is an ancestor of the outcome node Xo;
• π∗ be an ordering of the variables such that (i) π∗ is topological of D and (ii) Xt

and Xo are separated only by their mediators;
• π̃ be the ordering obtained from a topological ordering π and moving all the

mediators of Xt and Xo after Xo, preserving their relative ordering relation
We call D̃ := D∗

π̃ the optimal I-MAP of D. It holds that

paD̃(Xo) = z̃ = O(Xt, Xo, D) and L̃pao(D̃),o = −(Σ̂z̃,z̃)−1Σ̂z̃,o

The parameter of the edge t → o ∈ D̃ corresponds to the total causal effect of interest;
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The Optimal I-MAP: Example

.

D D̃

1

4

2

5 6

3 X1 X2

X4

X3

X5 X6

When interested in τ46 the Optimal I-MAP includes the best valid adjustment set
z∗ = {4, 2, 3} as the parent set of the outcome node, and L̃46 is the corresponding
parameter in the I-MAP parameterization;
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I-MAP Parameterization: Further technical results

We fully characterise the connection between the canonical Gaussian DAG Model
parameterization and our I-MAP parameterization.
We developed a fast procedure that transform the parameters (L, D) of a Gaussian DAG
Model into the corresponding parameters of the I-MAP parameterization, using only
m := |medD(t, o)| steps of Gaussian elimination.
The same procedure can be also used in computer algebra systems to derive the
constraints that hold among the parameters of the I-MAP parameterization.

In practice, identifying the constraints of the I-MAP parameterization remains quite
inconvenient;
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Bayesian Model Specification on the I-MAP
The statistical model can be written as

X | ΣD, D ∼ N (0, ΣD)

ΣD = L̃
−T

D̃L̃
−1

The parameter prior must then be defined only on the free-parameters of the I-MAP
parameterization. For instance, in the simplest case, we may specify for any j ∈ [q] and
any pair i, j such that Lij is a free parameter:

L̃ij | D ∼ N (0, σ2
0)

D̃jj | D ∼ Inv-Gamma(ν0/2, ν0σ0/2)

The DAG prior can be specified as before

p(D) =∝ ω|SD|(1 − ω)
q(q−1)

2 −|SD|
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Bayesian Model Specification: Comments

Because of the constraints holding among the parameters of the I-MAP parameterization,
computing the marginal likelihood becomes a difficult task;
Solution: We propose to use a Laplace approximation centered on the MLE of the
I-MAP (L̃MLE

, D̃
MLE), leading to a BIC-style approximation of the marginal likelihood;

As deriving the said constraints is computationally costly, even evaluating the likelihood
and deriving the MLE can be difficult
We thus first estimate the MLE of the DAG parameters (L, D) and then use our Gaussian
elimination procedure to derive (L̃MLE

, D̃
MLE) by the invariance property of MLE;

Similarly, sampling from the posterior p(L̃, D̃|X, D) occurs via Importance Sampling, by
first sampling from a DAG-Wishart distribution and then resampling the transformed
samples with weights given by the two priors ratio;
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Conclusions

• We propose an alternative parameterization of Gaussian DAG Models, the I-MAP
parameterization, that always contains a causal effect of interest as a single
parameter;

• Our parameterization allows for full control over the specification over the prior
distribution on the causal effect of interest in a Bayesian setting;

• As the I-MAP parameterization involves constraints among the parameters, we
developed both a procedure to (more easily) derive those constraints, and a
procedure to quickly transform the parameters of a Gaussian DAG model in the
typical parameterization to the ones of the I-MAP parameterization;

• The second procedure can be used to both derive an approximation to the marginal
likelihood and to sample from the posterior distribution over the parameters.

• As numerical experiments are still unsatisfactory, we are currently exploring new
possibilities for the approximation of the marginal likelihood
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Thank you!
alessandro.mascaro@upf.edu

https://alesmascaro.github.io
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