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Bayesian (parametric) inference

Given

an observed dataset y1:n = (y1, . . . , yn)
i.i.d.∼ µ∗

a parametric model {µθ : θ ∈ Θ ⊆ Rp}

a prior distribution π(θ)

we aim at the posterior distribution

π(θ | y1:n) ∝ π(θ) µn
θ(y1:n)

either in closed form, or by sampling

(θ1, . . . , θT )
i.i.d.∼ π(θ | y1:n)
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Approximate Bayesian Computation (ABC)

When the likelihood µn
θ(y1:n) is intractable, Bayesian inference is still

possible, as long as you can sample synthetic data from the model:

z1:m = (z1, . . . , zm)
i.i.d.∼ µθ̃

Rejection ABC

Iteratively:

sample θ̃ from the prior π

sample synthetic data z1:m
i.i.d.∼ µθ̃

if ∆(z1:m, y1:n) ≤ εn, retain θ̃ for your (approximate) posterior sample.

Note: as customary in theoretical studies of ABC, we set m = n.
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ABC posterior

Rather than returning a sample from the exact posterior

π(θ | y1:n) ∝ π(θ) µn
θ(y1:n)

rejection ABC returns a sample from the ABC posterior

π
(εn)
n (θ) ∝ π(θ)

∫
Yn

1{∆(z1:n, y1:n) ≤ εn} µn
θ(dz1:n)

whose properties clearly depend on the choice of the discrepancy ∆(·, ·).
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The choice of the discrepancy

This discrepancy was traditionally based on summary statistics

∆(z1:n, y1:n) = d(s(z1:n), s(y1:n))

but, unless such summaries are sufficient, this yields information loss.

This has motivated research on

selecting summaries

e.g. semi–automatically (Fearnhead and Prangle, 2012);

summary–free ABC

e.g. based on some discrepancy D among empirical distributions

∆(z1:n, y1:n) = D(µ̂z1:n , µ̂y1:n).
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Summary-free ABC

Popular choices for D in summary-free ABC are:

maximum mean discrepancy (MMD), i.e. “distance” in the RKHS,

and the related energy distance (Park et al., 2016; Nguyen et al., 2020)

Kullback–Leibler (KL) divergence (Jiang et al., 2018)

Wasserstein distance (Bernton et al., 2019)

Hellinger and Cramer–von Mises distances (Frazier, 2020)

γ–divergence (Fujisawa et al., 2021)

MMD and Wasserstein-1 both belong to the class of

integral probability semimetrics (IPS)
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Integral probability semimetrics (IPS)

Definition (IPS; Müller, 1997)

Let F be a class of measurable functions f : Y → R. Then the integral
probability semimetric DF among µ1 and µ2 in P(Y) is defined as

DF(µ1, µ2) := sup
f ∈F

∣∣∣∣∫ f dµ1 −
∫

f dµ2

∣∣∣∣ .
For different choices of F, we get

Wasserstein-1 distance

maximum mean discrepancy (MMD)

sup-distance among K summaries (e.g., moments)

total variation (TV) distance

Kolmogorov–Smirnov (KS) distance
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What can go wrong?

If DF = TV and both µ∗ and µθ are continuous, then

DF(µ̂y1:n , µ̂z1:n) = 1, almost surely.

This implies that

if ε < 1, you never accept any θ from the prior

if ε ≥ 1, you always accept any θ from the prior

→ the ABC posterior is either undefined or equal to the prior.

Research question

Which discrepancies DF (i.e., families F) work well for ABC?
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Rademacher complexity

The key element turns out to be the richness of F, measured via

Definition (Rademacher complexity)

Given x1:n = (x1, . . . , xn)
i.i.d.∼ µ ∈ P(Y) and a class F of measurable

functions f : Y → R, the Rademacher complexity of F with respect to µ is

defined as

Rµ,n(F) = Ex1:n,ϵ1:n

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

ϵi f (xi )

∣∣∣∣∣
]

where ϵ1:n are i.i.d. Rademacher r.v.’s, i.e. P(ϵi = 1) = P(ϵi = −1) = 1/2.

We also define Rn(F) := supµ∈P(Y)Rµ,n(F).
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Setting and assumptions

Main setting: n → ∞ and εn → ε∗ = infθ∈ΘDF(µθ, µ
∗),

or equivalently: εn = ε∗ + ε̄n with ε̄n → 0.

[an additional setting with fixed ε in the paper]

Assumptions

(C1) the observed data y1:n are i.i.d. from µ∗; [relaxed in the Suppl.]

(C2) there exist some positive L and cπ such that, for ε̄ small enough,

π ({θ ∈ Θ : DF(µθ,µ
∗) ≤ ε∗ + ε̄}) ≥ cπ ε̄

L;

(C3) ||f ||∞ ≤ b, ∀f ∈ F;

(C4) Rn(F) → 0 as n → ∞.
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A key lemma

Since DF is a semimetric,

DF(µθ, µ
∗) ≤ DF(µ̂z1:n , µθ) +DF(µ̂z1:n , µ̂y1:n) +DF(µ̂y1:n , µ

∗).

Lemma (Theorem 4.10 and Proposition 4.12 in Wainwright (2019))

Let x1:n
i.i.d.∼ µ. Then, if F satisfies (C3), for any n ≥ 1 and any δ ≥ 0,

Px1:n [DF(µ̂x1:n , µ) ≤ 2Rµ,n(F) + δ] ≥ 1− e−nδ2/2b2 ,

Px1:n

[
DF(µ̂x1:n , µ) ≥ Rµ,n(F)/2− sup

f ∈F
|E(f )|/2n1/2 − δ

]
≥ 1− e−nδ2/2b2 .

Without (C4), DF(µ̂z1:n , µθ) and DF(µ̂y1:n , µ
∗) remain large with pr. > 0

and a small DF(µ̂z1:n , µ̂y1:n) does not guarantee a small DF(µθ, µ
∗).

Note: z1:n are i.i.d. by construction, and y1:n are i.i.d. by (C1).
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Which IPS satisfy (C3) and (C4)?

When Y ⊂ Rd is bounded, Wasserstein-1 distance satisfies
(C3)–(C4) with no contraints on µ. When Y is unbounded,
restrictions on µ∗ and µθ (or a variable transformation) are required.

MMD with bounded kernels (e.g. Gaussian, Laplace) satisfies
(C3)–(C4) with no constraints on Y, µ∗ and µθ.

MMD with unbounded kernels requires constraints on µ∗ and µθ.

Summary-based distances can be seen as a special case of MMD
with either bounded or unbounded kernels.

KS satisfies (C3)–(C4).

TV satisfies (C3) but generally not (C4).

Sirio Legramanti ABC via Rademacher complexity Sept. 5, 2025 14 / 25



Main result

Theorem 1 (Concentration)

Let DF be an IPS, ε̄n → 0 as n → ∞, nε̄2n → ∞ and ε̄n/Rn(F) → ∞.

If (C1)–(C4), the ABC posterior with threshold εn = ε∗ + ε̄n satisfies

π(ε∗+ε̄n)
n

({
θ : DF(µθ, µ

∗) > ε∗ +
4

3
ε̄n + 2Rn(F) +

[
2b2

n
log

(
n

ε̄Ln

)]1/2})
≤ 2 · 3L

cπn

with Py1:n–probability going to 1 as n → ∞.

Hence, the ABC posterior asymptotically concentrates around those

{θ ∈ Θ : DF(µθ, µ
∗) ≤ ε∗}

Note: if the model is well-specified, then ε∗ = infθ∈ΘDF(µθ, µ
∗) = 0.
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Simulation study

Huber-contaminated data

y1:100
i.i.d.∼ µ∗ = (1− α)µθ0 + αµC , α ∈ {0.05, 0.10, 0.15}

µθ0 = t(θ0(1, 1)
T ,Σ0, ν0 = 3), with θ0 = 1

µC = t(θC (1, 1)
T ,Σ0, ν0 = 3), with θc = 20

Y = R2, hence unbounded

Gaussian model µθ = N2(θ(1, 1)
T ,Σ0) (misspecified even for α = 0)

Gaussian prior θ ∼ N(0, 1)

Our theory ensures concentration also around the uncontaminated µθ0
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ABC posterior for a single simulated dataset

the mean summary statistic yields strong bias even with α = 0.05;

Wasserstein-1 yields smaller but increasing bias as α grows;

KL (not an IPS) stays almost unbiased but at lower concentration;

MMD with Gaussian (bounded) kernel is robust even as α grows.
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MSE averaged over 50 simulated datasets

MSE = E
π
(εn)
n

(θ − θ0)
2

α = 0.05 α = 0.10 α = 0.15

(ips) MMD with Gaussian kernel 0.024 0.027 0.031

(ips) Wasserstein-1 0.027 0.067 0.122

(ips) Summary (mean) 0.841 2.648 2.835

(non–ips) KL 0.073 0.076 0.077

at α = 0.05, both MMD and Wasserstein-1 perform well;

as α grows, Wasserstein-1 deteriorates while MMD stays robust;

ABC using the mean as a summary statistic suffers significantly from
location contamination, even at α = 0.05;

KL performs worse than MMD but is consistent as α grows.
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Conclusions and future directions

We built a bridge between ABC and Rademacher complexity for the
broad IPS class, which include MMD and Wasserstein-1.

Possible extensions include:

beyond IPS: e.g., f –divergences (like KL and Hellinger distance) via
unified treatment with IPS (Agrawal and Horel, 2021; Birrell et al., 2022);

beyond i.i.d. and β-mixing data;

beyond ABC: e.g., generalized likelihood–free Bayesian inference and
discrepancy–based pseudo–posteriors (Miller and Dunson, 2019;
Matsubara et al., 2022; Dellaporta et al., 2022)

Working paper (with Marta Catalano, Luiss)

Is Wasserstein doomed for ABC? Spoiler: not quite (stay tuned!)
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Thanks for your attention

For further questions, feel free to contact me at

sirio.legramanti@unibg.it
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Reproducing kernel Hilbert space (RKHS)

A positive-definite symmetric kernel k : Y × Y → R defines a RKHS

H = closure of span{k(y , ·) : y ∈ Y}.

The inner product in H with k(y , ·) corresponds to point evaluation, i.e.

⟨f , k(y , ·)⟩H = f (y).

See Muandet et al. (2017) for an extensive review.

Probability measures on Y can also be mapped to the RKHS

µ : P(Y) −→ H, P 7−→ µP(·) :=
∫
Y
k(y , ·) dP(y).
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Maximum mean discrepancy (MMD)

MMD between distributions is the RKHS norm between embeddings:

MMD(P,Q) = ||µP − µQ ||H.

More explicitly:

MMD2(P,Q) = ⟨µP − µQ , µP − µQ⟩H = ||µP ||2H − 2⟨µP , µQ⟩H + ||µQ ||2H =

= E [k(X ,X ′)]− 2E [k(X ,Y )] + E [k(Y ,Y ′)],

where X ,X ′ ∼ P and Y ,Y ′ ∼ Q, all independently.

In the case of empirical distributions:

MMD2(µ̂z1:m , µ̂y1:n ) =
1

m2

∑
i

∑
i′

k(zi , zi′)−
2

mn

∑
i

∑
j

k(zi , yj) +
1

n2

∑
j

∑
j′

k(yj , yj′).

If the kernel k is characteristic (i.e., the map P 7−→ µP is injective) then
MMD is a distance (i.e., MMD(P,Q) = 0 if and only if P = Q).
Examples of characteristic kernels on Rd : Gaussian, Laplace.
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Link with goodness-of-fit tests

MMD was originally proposed as the test statistic for a two-sample test

(Gretton et al., 2012)

Like ABC, normality and goodness-of-fit tests can also be classified into

summary-based

- Jarque-Bera Normality test (summaries: skewness, kurtosis)

- Shapiro-Wilk Normality test (summaries: order statistics)

discrepancy-based

- Kolmogorov-Smirnov goodness-of-fit test (distance: KS)
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