Sirio Legramanti

University of Bergamo

Concentration of discrepancy-based approximate

Bayesian computation via Rademacher complexity

SISBayes
Padua, Italy — Sept. 5, 2025

Sirio Legramanti ABC via Rademacher complexity Sept. 5, 2025



Today's talk will be mainly based on THE ANNALS
STATISTICS

Legramanti, Durante, Alquier (2025),
Concentration of discrepancy-based
approximate Bayesian computation via
Rademacher complexity.

Annals of Statistics, 53(1) 37-60
https://doi.org/10.1214/24-A0S2453

Also available at:
https://arxiv.org/abs/2206.06991 .

Sirio Legramanti ABC via Rademacher complexity Sept. 5, 2025 2/25


https://doi.org/10.1214/24-AOS2453
https://arxiv.org/abs/2206.06991

Joint work with

Daniele Durante Pierre Alquier
Bocconi University, Milan ESSEC Asia—Pacific, Singapore

Sirio Legramanti ABC via Rademacher complexity Sept. 5, 2025



Bayesian (parametric) inference

Given
@ an observed dataset vin=(1,---,¥n) hig uw*
@ a parametric model {po : 0 € © CRP}
@ a prior distribution 7(0)

we aim at the posterior distribution
(0 | y1:n) o< 7(0) pg(yi:n)
either in closed form, or by sampling

(91, . ,97‘) Ifl\? 7T(0 | y1:n)
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Approximate Bayesian Computation (ABC)

When the likelihood pj(y1.n) is intractable, Bayesian inference is still
possible, as long as you can sample synthetic data from the model:

Z1:m = (217"‘ 7Zm) ~ ,U,é’

Rejection ABC

Iteratively:

o sample § from the prior

. iid.
@ sample synthetic data z;., RS Mg

o if A(z1:m,y1:n) < &, retain 6 for your (approximate) posterior sample.

Note: as customary in theoretical studies of ABC, we set m = n.
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ABC posterior

Rather than returning a sample from the exact posterior

(0 [ y1:n) o< w(0) pi(yr:n)

rejection ABC returns a sample from the ABC posterior

wff")(ﬁ) X W(Q)/ ]I{A(Zl:n;}/l:n) < €n} :U’g(dzl:n)

n

whose properties clearly depend on the choice of the discrepancy A(-,-).
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The choice of the discrepancy

This discrepancy was traditionally based on summary statistics

A(Zl:m y1:n) = d(5(211”)7 5(y1:n))

but, unless such summaries are sufficient, this yields information loss.

This has motivated research on

o selecting summaries
e.g. semi—automatically (Fearnhead and Prangle, 2012);

o summary—free ABC
e.g. based on some discrepancy D among empirical distributions

A(Zl:na y1:n) = D(:azl:n? la}/l:n)'

Sirio Legramanti ABC via Rademacher complexity Sept. 5, 2025



Summary-free ABC

Popular choices for D in summary-free ABC are:

e maximum mean discrepancy (MMD), i.e. “distance” in the RKHS,
and the related energy distance (Park et al., 2016; Nguyen et al., 2020)

o Kullback-Leibler (KL) divergence (Jiang et al., 2018)
o Wasserstein distance (Bernton et al., 2019)
e Hellinger and Cramer—von Mises distances (Frazier, 2020)

e ~—divergence (Fujisawa et al., 2021)

MMD and Wasserstein-1 both belong to the class of
integral probability semimetrics (IPS) J
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Integral probability semimetrics (IPS)

Definition (IPS; Miiller, 1997)

Let § be a class of measurable functions f : ) — R. Then the integral
probability semimetric Dz among p; and po in P()) is defined as

Dg(p1, p2) = SUP’/f dpu —/f dpz
feg

For different choices of §, we get
@ Wasserstein-1 distance
@ maximum mean discrepancy (MMD)
@ sup-distance among K summaries (e.g., moments)
e total variation (TV) distance

e Kolmogorov—Smirnov (KS) distance
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What can go wrong?

If Dy = TV and both p* and py are continuous, then
Dy (fiyyps fPzyy) = 1, almost surely.

This implies that

e if € < 1, you never accept any 6 from the prior

e if ¢ > 1, you always accept any 6 from the prior

— the ABC posterior is either undefined or equal to the prior.

Research question

Which discrepancies Dj (i.e., families §) work well for ABC?
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Rademacher complexity

The key element turns out to be the richness of §, measured via

Definition (Rademacher complexity)

Given x1:p = (X1, ..., Xn) hid- w € P(Y) and a class § of measurable

functions f : J) — R, the Rademacher complexity of § with respect to u is

Ze,f(x, ]

where €., are i.i.d. Rademacher r.v.’s, i.e. P(¢; =1) = P(¢; = —1) = 1/2.

defined as
mﬂv”(%’) = IEXl:nyel:n lsup

We also define Rn(F) = sup,epy) Rpun(F)-
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Setting and assumptions

Main setting: n—oo and e, — " =infgeco Dz(1o, 1*),
or equivalently: e, =¢e¢*+&, with £&,—0.

[an additional setting with fixed € in the paper]

Assumptions
(C1) the observed data y1., are i.i.d. from p*;  [relaxed in the Suppl.]

(C2) there exist some positive L and ¢, such that, for & small enough,

T ({0 € © : Dy(ug.p*) < €* +&}) > crfh

(C3) |flloc < b, VFfeF
(C4) Rp(F) = 0 as n— .
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A key lemma

Since Dy is a semimetric,

D@(IUIQ,'LL*) S D%’(/’lzl:n,ﬂe) +D$(ﬁ21:nvﬂY1:n) +Dg(ﬁyln’u*)

Lemma (Theorem 4.10 and Proposition 4.12 in Wainwright (2019))

Let x1.p i w. Then, if § satisfies (C3), for any n > 1 and any 6 > 0,

Pry [D5(fixir 1) < 2Ry () + 0] > 1 — e /28%,

P | D3 (s 1) > Rpn(§)/2 — sup [B(F)| /202 = 6| > 1 — e /20,
feEF

v

Without (C4), Dg(fiz.,, o) and Dg(fly,.,, #*) remain large with pr. > 0
and a small Dg(fiz,.,, fiy,,) does not guarantee a small Dg(ug, 1*).

Note: z;., are i.i.d. by construction, and y;., are i.i.d. by (C1).
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Which IPS satisfy (C3) and (C4)?

@ When ) C RY is bounded, Wasserstein-1 distance satisfies
(C3)—(C4) with no contraints on p. When ) is unbounded,
restrictions on p* and pg (or a variable transformation) are required.

e MMD with bounded kernels (e.g. Gaussian, Laplace) satisfies
(C3)—(C4) with no constraints on ), u* and py.

o MMD with unbounded kernels requires constraints on p* and pyg.

@ Summary-based distances can be seen as a special case of MMD
with either bounded or unbounded kernels.

o KS satisfies (C3)—(C4).

e TV satisfies (C3) but generally not (C4).
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Main result

Theorem 1 (Concentration)

Let D3 be an IPS, &, — 0 as n — 00, N2 — 0o and &,/Rn(T) — 0.

If (C1)—(C4), the ABC posterior with threshold ¢, = £* + &, satisfies

St * * 4 2b2 1/2 23L
" +En) ({0 :Ds(uo, u™) >e" + 55',, + 2%R,(3) + {T log <£_>] <

Crn

with P, —probability going to 1 as n — ooc.

Hence, the ABC posterior asymptotically concentrates around those

{0 € ©:Dz(pp, ") <"}
Note: if the model is well-specified, then £* = infypce Dy(1g, 1*) = 0.
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Simulation study

Huber-contaminated data
yiaoo R pt = (1— a)ug, + opc,  a € {0.05,0.10,0.15}
o g, = t(00(1,1)7, o, 110 = 3), with fp = 1
o uc=1t(0c(1,1)7, %o, 10 = 3), with . = 20
e YV = R?, hence unbounded

Gaussian model g = No(6(1,1)7, o) (misspecified even for a = 0)
Gaussian prior 6~ N(0,1)

Our theory ensures concentration also around the uncontaminated i,
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ABC posterior for a single simulated dataset
|
% .
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2 $ E3 o.10
o Ed o015

i
iy
iy

MMD Wasserstein-1 ‘Summary (mean) KL

@ the mean summary statistic yields strong bias even with o = 0.05;
@ Wasserstein-1 yields smaller but increasing bias as a grows;
e KL (not an IPS) stays almost unbiased but at lower concentration;

e MMD with Gaussian (bounded) kernel is robust even as « grows.
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MSE averaged over 50 simulated datasets

MSE = E_-,)(6 — 60)?

a=005 a=010 «a=0.15

(1rs) MMD with Gaussian kernel  0.024 0.027 0.031
(1PS) Wasserstein-1 0.027 0.067 0.122
(1ps) Summary (mean) 0.841 2.648 2.835
(non-1pPs) KL 0.073 0.076 0.077

@ at a = 0.05, both MMD and Wasserstein-1 perform well;
@ as « grows, Wasserstein-1 deteriorates while MMD stays robust;

@ ABC using the mean as a summary statistic suffers significantly from
location contamination, even at oo = 0.05;

@ KL performs worse than MMD but is consistent as « grows.
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Conclusions and future directions

We built a bridge between ABC and Rademacher complexity for the
broad IPS class, which include MMD and Wasserstein-1.

Possible extensions include:

e beyond IPS: e.g., f—divergences (like KL and Hellinger distance) via
unified treatment with IPS (Agrawal and Horel, 2021; Birrell et al., 2022);

e beyond i.i.d. and 3-mixing data;

o beyond ABC: e.g., generalized likelihood—free Bayesian inference and
discrepancy—based pseudo—posteriors (Miller and Dunson, 2019;
Matsubara et al., 2022; Dellaporta et al., 2022)

Working paper (with Marta Catalano, Luiss)

Is Wasserstein doomed for ABC? Spoiler: not quite (stay tuned!)
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Thanks for your attention

For further questions, feel free to contact me at

sirio.legramanti@unibg.it
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Reproducing kernel Hilbert space (RKHS)

A positive-definite symmetric kernel k : Y x J — R defines a RKHS
H = closure of span{k(y,:) : y € V}.
The inner product in H with k(y,-) corresponds to point evaluation, i.e.
(fok(ys ) = £(y).
See Muandet et al. (2017) for an extensive review.

Probability measures on )’ can also be mapped to the RKHS

WP s H P () = /y K(y.") dP(y).
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Maximum mean discrepancy (MMD)

MMD between distributions is the RKHS norm between embeddings:

MMD(P, Q) = [lup — ptollnu-
More explicitly:

MMD?(P, Q) = (up — pqs e — o) = |luel3 — 2(kp, o) + |l1ql 3 =
= E[k(X,X")] = 2E[k(X, Y)] 4+ E[k(Y,Y")],

where X, X’ ~ P and Y, Y’ ~ Q, all independently.

In the case of empirical distributions:
A A 1 2 1
MMD2(:U'21:m7.U'y1:n) = m2 E E k(zivzi’) ~mn E E k(zi7.yj) + o) E : E k(ijyj/)'
i i i

If the kernel k is characteristic (i.e., the map P —— pp is injective) then
MMD is a distance (i.e., MMD(P, Q) = 0 if and only if P = Q).

Examples of characteristic kernels on R?: Gaussian, Laplace.
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Link with goodness-of-fit tests

MMD was originally proposed as the test statistic for a two-sample test
(Gretton et al., 2012) J

Like ABC, normality and goodness-of-fit tests can also be classified into

@ summary-based
- Jarque-Bera Normality test (summaries: skewness, kurtosis)

- Shapiro-Wilk Normality test (summaries: order statistics)

o discrepancy-based
- Kolmogorov-Smirnov goodness-of-fit test (distance: KS)
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