Sirio Legramanti

University of Bergamo

Concentration of discrepancy-based approximate Bayesian computation via Rademacher complexity

SISBayes

Padua, Italy - Sept. 5, 2025

Today's talk will be mainly based on

Legramanti, Durante, Alquier (2025), Concentration of discrepancy-based approximate Bayesian computation via Rademacher complexity.

Annals of Statistics, 53(1) 37-60 https://doi.org/10.1214/24-AOS2453

Also available at: https://arxiv.org/abs/2206.06991

THE ANNALS STATISTICS AG OFFICE ADMINISTRATICS ENTRY OF A CONTROLLED AND A CONTROLLED AN

Joint work with

Daniele Durante Bocconi University, Milan

Pierre Alquier ESSEC Asia-Pacific, Singapore

Bayesian (parametric) inference

Given

- an **observed dataset** $y_{1:n} = (y_1, \ldots, y_n) \stackrel{\text{i.i.d.}}{\sim} \mu^*$
- a parametric model $\{\mu_{\theta}: \theta \in \Theta \subseteq \mathbb{R}^p\}$
- a prior distribution $\pi(\theta)$

we aim at the posterior distribution

$$\pi(\theta \mid y_{1:n}) \propto \pi(\theta) \; \mu_{\theta}^{n}(y_{1:n})$$

either in closed form, or by sampling

$$(\theta_1,\ldots,\theta_T) \stackrel{\mathsf{i.i.d.}}{\sim} \pi(\theta \mid y_{1:n})$$

Approximate Bayesian Computation (ABC)

When the likelihood $\mu_{\theta}^{n}(y_{1:n})$ is intractable, Bayesian inference is still possible, as long as you can sample **synthetic data** from the model:

$$z_{1:m} = (z_1, \ldots, z_m) \stackrel{\text{i.i.d.}}{\sim} \mu_{\tilde{\theta}}$$

Rejection ABC

Iteratively:

- ullet sample $ilde{ heta}$ from the prior π
- ullet sample **synthetic data** $z_{1:m} \overset{\text{i.i.d.}}{\sim} \mu_{ ilde{ heta}}$
- if $\Delta(z_{1:m}, y_{1:n}) \leq \varepsilon_n$, retain $\tilde{\theta}$ for your (approximate) posterior sample.

Note: as customary in theoretical studies of ABC, we set m = n.

ABC posterior

Rather than returning a sample from the exact posterior

$$\pi(\theta \mid y_{1:n}) \propto \pi(\theta) \; \mu_{\theta}^{n}(y_{1:n})$$

rejection ABC returns a sample from the ABC posterior

$$\pi_n^{(\varepsilon_n)}(\theta) \propto \pi(\theta) \int_{\mathcal{Y}^n} \mathbb{1}\{\Delta(z_{1:n}, y_{1:n}) \leq \varepsilon_n\} \ \mu_{\theta}^n(dz_{1:n})$$

whose properties clearly depend on the choice of the discrepancy $\Delta(\cdot,\cdot)$.

The choice of the discrepancy

This discrepancy was traditionally based on summary statistics

$$\Delta(z_{1:n},y_{1:n})=d(s(z_{1:n}),s(y_{1:n}))$$

but, unless such summaries are sufficient, this yields information loss.

This has motivated research on

- selecting summaries
 e.g. semi-automatically (Fearnhead and Prangle, 2012);
- summary–free ABC e.g. based on some discrepancy $\mathcal D$ among empirical distributions

$$\Delta(z_{1:n}, y_{1:n}) = \mathcal{D}(\hat{\mu}_{z_{1:n}}, \hat{\mu}_{y_{1:n}}).$$

Summary-free ABC

Popular choices for $\mathcal D$ in summary-free ABC are:

- maximum mean discrepancy (MMD), i.e. "distance" in the RKHS, and the related energy distance (Park et al., 2016; Nguyen et al., 2020)
- Kullback-Leibler (KL) divergence (Jiang et al., 2018)
- Wasserstein distance (Bernton et al., 2019)
- Hellinger and Cramer-von Mises distances (Frazier, 2020)
- γ -divergence (Fujisawa et al., 2021)

MMD and Wasserstein-1 both belong to the class of integral probability semimetrics (IPS)

Integral probability semimetrics (IPS)

Definition (IPS; Müller, 1997)

Let \mathfrak{F} be a class of measurable functions $f: \mathcal{Y} \to \mathbb{R}$. Then the **integral probability semimetric** $\mathcal{D}_{\mathfrak{F}}$ among μ_1 and μ_2 in $\mathcal{P}(\mathcal{Y})$ is defined as

$$\mathcal{D}_{\mathfrak{F}}(\mu_1,\mu_2):=\sup_{f\in\mathfrak{F}}\left|\int f\ d\mu_1-\int f\ d\mu_2\right|.$$

For different choices of \mathfrak{F} , we get

- Wasserstein-1 distance
- maximum mean discrepancy (MMD)
- sup-distance among K summaries (e.g., moments)
- total variation (TV) distance
- Kolmogorov-Smirnov (KS) distance

What can go wrong?

If $\mathcal{D}_{\mathfrak{F}}=\mathit{TV}$ and both μ^* and μ_{θ} are continuous, then

$$\mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{\mathbf{y}_{1:n}},\hat{\mu}_{\mathbf{z}_{1:n}})=1,$$
 almost surely.

This implies that

- if $\varepsilon < 1$, you **never** accept any θ from the prior
- ullet if $arepsilon \geq 1$, you **always** accept any heta from the prior
- \rightarrow the ABC posterior is either undefined or equal to the prior.

Research question

Which discrepancies $\mathcal{D}_{\mathfrak{F}}$ (i.e., families \mathfrak{F}) work well for ABC?

Rademacher complexity

The key element turns out to be the **richness** of \mathfrak{F} , measured via

Definition (Rademacher complexity)

Given $x_{1:n} = (x_1, \dots, x_n) \stackrel{\text{i.i.d.}}{\sim} \mu \in \mathcal{P}(\mathcal{Y})$ and a class \mathfrak{F} of measurable functions $f: \mathcal{Y} \to \mathbb{R}$, the Rademacher complexity of \mathfrak{F} with respect to μ is defined as

$$\mathfrak{R}_{\mu,n}(\mathfrak{F}) = \mathbb{E}_{\mathsf{x}_{1:n},\epsilon_{1:n}} \left[\sup_{f \in \mathfrak{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(\mathsf{x}_i) \right| \right]$$

where $\epsilon_{1:n}$ are i.i.d. Rademacher r.v.'s, i.e. $\mathbb{P}(\epsilon_i = 1) = \mathbb{P}(\epsilon_i = -1) = 1/2$.

We also define $\mathfrak{R}_n(\mathfrak{F}) := \sup_{\mu \in \mathcal{P}(\mathcal{Y})} \mathfrak{R}_{\mu,n}(\mathfrak{F}).$

Setting and assumptions

$$n \to \infty$$
 and $\varepsilon_n \to \varepsilon^* = \inf_{\theta \in \Theta} \mathcal{D}_{\mathfrak{F}}(\mu_{\theta}, \mu^*),$

or equivalently:
$$\varepsilon_n = \varepsilon^* + \bar{\varepsilon}_n$$
 with $\bar{\varepsilon}_n \to 0$.

[an additional setting with fixed ε in the paper]

Assumptions

- (C1) the observed data $y_{1:n}$ are i.i.d. from μ^* ; [relaxed in the Suppl.]
- (C2) there exist some positive L and c_{π} such that, for $\bar{\varepsilon}$ small enough,

$$\pi\left(\left\{\theta\in\Theta:\mathcal{D}_{\mathfrak{F}}(\mu_{\theta},\mu^{*})\leq\varepsilon^{*}+\bar{\varepsilon}\right\}\right)\geq c_{\pi}\bar{\varepsilon}^{L};$$

(C3)
$$||f||_{\infty} \leq b$$
, $\forall f \in \mathfrak{F}$;

(C4)
$$\mathfrak{R}_n(\mathfrak{F}) \to 0$$
 as $n \to \infty$.

A key lemma

Since $\mathcal{D}_{\mathfrak{F}}$ is a semimetric,

$$\mathcal{D}_{\mathfrak{F}}(\mu_{\theta},\mu^*) \leq \mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{\mathsf{z}_{1:n}},\mu_{\theta}) + \mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{\mathsf{z}_{1:n}},\hat{\mu}_{\mathsf{y}_{1:n}}) + \mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{\mathsf{y}_{1:n}},\mu^*).$$

Lemma (Theorem 4.10 and Proposition 4.12 in Wainwright (2019))

Let $x_{1:n} \stackrel{i.i.d.}{\sim} \mu$. Then, if \mathfrak{F} satisfies (C3), for any $n \geq 1$ and any $\delta \geq 0$,

$$\mathbb{P}_{\mathsf{x}_{1:n}}\left[\mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{\mathsf{x}_{1:n}},\mu) \leq 2\mathfrak{R}_{\mu,n}(\mathfrak{F}) + \delta\right] \geq 1 - e^{-n\delta^2/2b^2},$$

$$\mathbb{P}_{\mathsf{x}_{1:n}}\left[\mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{\mathsf{x}_{1:n}},\mu) \geq \mathfrak{R}_{\mu,n}(\mathfrak{F})/2 - \sup_{f \in \mathfrak{F}} |\mathbb{E}(f)|/2n^{1/2} - \delta\right] \geq 1 - e^{-n\delta^2/2b^2}.$$

Without (C4), $\mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{z_{1:n}}, \mu_{\theta})$ and $\mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{y_{1:n}}, \mu^*)$ remain large with pr. > 0 and a small $\mathcal{D}_{\mathfrak{F}}(\hat{\mu}_{z_{1:n}}, \hat{\mu}_{y_{1:n}})$ does not guarantee a small $\mathcal{D}_{\mathfrak{F}}(\mu_{\theta}, \mu^*)$.

Note: $z_{1:n}$ are i.i.d. by construction, and $y_{1:n}$ are i.i.d. by (C1).

Which IPS satisfy (C3) and (C4)?

- When $\mathcal{Y} \subset \mathbb{R}^d$ is bounded, **Wasserstein-1 distance** satisfies (C3)–(C4) with no contraints on μ . When \mathcal{Y} is unbounded, restrictions on μ^* and μ_{θ} (or a variable transformation) are required.
- MMD with bounded kernels (e.g. Gaussian, Laplace) satisfies (C3)–(C4) with no constraints on \mathcal{Y} , μ^* and μ_{θ} .
- MMD with unbounded kernels requires constraints on μ^* and μ_{θ} .
- **Summary-based distances** can be seen as a special case of MMD with either bounded or unbounded kernels.
- KS satisfies (C3)–(C4).
- **TV** satisfies (C3) but generally not (C4).

Main result

Theorem 1 (Concentration)

Let $\mathcal{D}_{\mathfrak{F}}$ be an IPS, $\bar{\varepsilon}_n \to 0$ as $n \to \infty$, $n\bar{\varepsilon}_n^2 \to \infty$ and $\bar{\varepsilon}_n/\mathfrak{R}_n(\mathfrak{F}) \to \infty$.

If (C1)–(C4), the ABC posterior with threshold $\varepsilon_n = \varepsilon^* + \bar{\varepsilon}_n$ satisfies

$$\pi_n^{(\varepsilon^* + \bar{\varepsilon}_n)} \left(\left\{ \theta : \mathcal{D}_{\mathfrak{F}}(\mu_\theta, \mu^*) > \varepsilon^* + \frac{4}{3} \bar{\varepsilon}_n + 2\mathfrak{R}_n(\mathfrak{F}) + \left[\frac{2b^2}{n} \log \left(\frac{n}{\bar{\varepsilon}_n^L} \right) \right]^{1/2} \right\} \right) \leq \frac{2 \cdot 3^L}{c_\pi n}$$

with $\mathbb{P}_{y_{1:n}}$ -probability going to 1 as $n \to \infty$.

Hence, the ABC posterior asymptotically concentrates around those

$$\{\theta \in \Theta : \mathcal{D}_{\mathfrak{F}}(\mu_{\theta}, \mu^*) \leq \varepsilon^*\}$$

Note: if the model is well-specified, then $\varepsilon^* = \inf_{\theta \in \Theta} \mathcal{D}_{\mathfrak{F}}(\mu_{\theta}, \mu^*) = 0$.

Simulation study

Huber-contaminated data

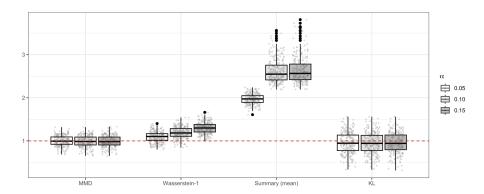
$$y_{1:100} \overset{\text{i.i.d.}}{\sim} \mu^* = (1 - \alpha)\mu_{\theta_0} + \alpha\mu_C, \qquad \alpha \in \{0.05, 0.10, 0.15\}$$

- $\mu_{\theta_0} = t(\theta_0(1,1)^T, \Sigma_0, \nu_0 = 3)$, with $\theta_0 = 1$
- $\mu_C = t(\theta_C(1,1)^T, \Sigma_0, \nu_0 = 3)$, with $\theta_c = 20$
- ullet $\mathcal{Y}=\mathbb{R}^2$, hence unbounded

Gaussian model
$$\mu_{\theta} = N_2(\theta(1,1)^T, \Sigma_0)$$
 (misspecified even for $\alpha = 0$)
Gaussian prior $\theta \sim N(0,1)$

Our theory ensures concentration also around the uncontaminated $\mu_{ heta_0}$

ABC posterior for a single simulated dataset



- ullet the mean summary statistic yields strong bias even with lpha=0.05;
- \bullet Wasserstein-1 yields smaller but increasing bias as α grows;
- KL (not an IPS) stays almost unbiased but at lower concentration;
- ullet MMD with Gaussian (bounded) kernel is robust even as lpha grows.

MSE averaged over 50 simulated datasets

$$MSE = E_{\pi_n^{(\varepsilon_n)}} (\theta - \theta_0)^2$$

	$\alpha = 0.05$	$\alpha = 0.10$	$\alpha = 0.15$
(IPS) MMD with Gaussian kernel	0.024	0.027	0.031
(IPS) Wasserstein-1	0.027	0.067	0.122
(IPS) Summary (mean)	0.841	2.648	2.835
(non-IPS) KL	0.073	0.076	0.077

- at $\alpha = 0.05$, both MMD and Wasserstein-1 perform well;
- ullet as lpha grows, Wasserstein-1 deteriorates while MMD stays robust;
- ABC using the mean as a summary statistic suffers significantly from location contamination, even at $\alpha=0.05$;
- \bullet KL performs worse than MMD but is consistent as α grows.

Conclusions and future directions

We built a bridge between ABC and Rademacher complexity for the broad IPS class, which include MMD and Wasserstein-1.

Possible extensions include:

- **beyond IPS:** e.g., *f*-divergences (like KL and Hellinger distance) via unified treatment with IPS (Agrawal and Horel, 2021; Birrell et al., 2022);
- beyond i.i.d. and β -mixing data;
- beyond ABC: e.g., generalized likelihood–free Bayesian inference and discrepancy–based pseudo–posteriors (Miller and Dunson, 2019; Matsubara et al., 2022; Dellaporta et al., 2022)

Working paper (with Marta Catalano, Luiss)

Is Wasserstein doomed for ABC? Spoiler: not quite (stay tuned!)

Thanks for your attention

For further questions, feel free to contact me at

sirio.legramanti@unibg.it

References I

- R. Agrawal and T. Horel. Optimal bounds between f-divergences and integral probability metrics. *Journal of Machine Learning Research*, 22:1–59, 2021.
- E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert. Approximate Bayesian computation with the Wasserstein distance. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 81(2):235–269, 2019.
- J. Birrell, P. Dupuis, M. A. Katsoulakis, Y. Pantazis, and L. Rey-Bellet. (f, γ) -divergences: Interpolating between f-divergences and integral probability metrics. *Journal of Machine Learning Research*, 23(39):1–70, 2022.
- C. Dellaporta, J. Knoblauch, T. Damoulas, and F.-X. Briol. Robust Bayesian inference for simulator-based models via the MMD posterior bootstrap. In *International Conference on Artificial Intelligence and Statistics*, pages 943–970. PMLR, 2022.
- P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 74(3):419–474, 2012.
- D. T. Frazier. Robust and efficient approximate Bayesian computation: A minimum distance approach. arXiv:2006.14126, 2020.
- M. Fujisawa, T. Teshima, I. Sato, and M. Sugiyama. γ -ABC: Outlier-robust approximate Bayesian computation based on a robust divergence estimator. In *International Conference on Artificial Intelligence and Statistics*, pages 1783–1791. PMLR, 2021.
- A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.

21/25

References II

- B. Jiang, T.-Y. Wu, and W. H. Wong. Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy. In *International Conference on Artificial Intelligence and Statistics*, pages 1711–1721. PMLR, 2018.
- T. Matsubara, J. Knoblauch, F.-X. Briol, and C. J. Oates. Robust generalised Bayesian inference for intractable likelihoods. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 84(3):997–1022, 2022.
- J. W. Miller and D. B. Dunson. Robust Bayesian inference via coarsening. *Journal of the American Statistical Association*, 2019.
- K. Muandet, K. Fukumizu, B. Sriperumbudur, and B. Schölkopf. Kernel mean embedding of distributions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2): 1–141, 2017.
- A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2):429–443, 1997.
- H. D. Nguyen, J. Arbel, H. Lü, and F. Forbes. Approximate Bayesian computation via the energy statistic. *IEEE Access*, 8:131683–131698, 2020.
- M. Park, W. Jitkrittum, and D. Sejdinovic. K2-ABC: Approximate Bayesian computation with kernel embeddings. In *International Conference on Artificial Intelligence and Statistics*, pages 398–407. PMLR, 2016.
- M. J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*, volume 48. Cambridge University Press, 2019.

Reproducing kernel Hilbert space (RKHS)

A positive-definite symmetric **kernel** $k: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ defines a RKHS

$$\mathcal{H} = \mathsf{closure} \ \mathsf{of} \ \mathsf{span} \{ k(y, \cdot) : y \in \mathcal{Y} \}.$$

The **inner product** in \mathcal{H} with $k(y,\cdot)$ corresponds to point evaluation, i.e.

$$\langle f, k(y, \cdot) \rangle_{\mathcal{H}} = f(y).$$

See Muandet et al. (2017) for an extensive review.

Probability measures on ${\mathcal Y}$ can also be mapped to the RKHS

$$\mu: \mathcal{P}(\mathcal{Y}) \longrightarrow \mathcal{H}, \qquad P \longmapsto \mu_P(\cdot) := \int_{\mathcal{Y}} k(y, \cdot) \ dP(y).$$

Maximum mean discrepancy (MMD)

MMD between distributions is the **RKHS norm** between embeddings:

$$MMD(P, Q) = ||\mu_P - \mu_Q||_{\mathcal{H}}.$$

More explicitly:

$$MMD^{2}(P,Q) = \langle \mu_{P} - \mu_{Q}, \mu_{P} - \mu_{Q} \rangle_{\mathcal{H}} = ||\mu_{P}||_{\mathcal{H}}^{2} - 2\langle \mu_{P}, \mu_{Q} \rangle_{\mathcal{H}} + ||\mu_{Q}||_{\mathcal{H}}^{2} = E[k(X,X')] - 2E[k(X,Y)] + E[k(Y,Y')],$$

where $X, X' \sim P$ and $Y, Y' \sim Q$, all independently.

In the case of **empirical distributions**:

$$MMD^{2}(\hat{\mu}_{z_{1:m}},\hat{\mu}_{y_{1:n}}) = \frac{1}{m^{2}}\sum_{i}\sum_{i'}k(z_{i},z_{i'}) - \frac{2}{mn}\sum_{i}\sum_{j}k(z_{i},y_{j}) + \frac{1}{n^{2}}\sum_{j}\sum_{j'}k(y_{j},y_{j'}).$$

If the kernel k is **characteristic** (i.e., the map $P \longmapsto \mu_P$ is injective) then MMD is a **distance** (i.e., MMD(P,Q)=0 if and only if P=Q).

Examples of characteristic kernels on \mathbb{R}^d : Gaussian, Laplace.

Link with goodness-of-fit tests

MMD was originally proposed as the test statistic for a two-sample test (Gretton et al., 2012)

Like ABC, normality and goodness-of-fit tests can also be classified into

summary-based

- Jarque-Bera Normality test (summaries: skewness, kurtosis)
- Shapiro-Wilk Normality test (summaries: order statistics)

discrepancy-based

- Kolmogorov-Smirnov goodness-of-fit test (distance: KS)