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Today’s -- traditional -- menu

• Starter: a taste of background on a posterior distribution & a
parameter of interest & a precise null hypothesis
• First course: two interesting Bayesian measures of evidence
• Main course: two objective matching (median and strong)

priors (it depends on your tastes)
• Dessert: two little tasters of examples, so as not to overeat

before the coffee break
• Coffee: conclusions & discussion

It is argued that analytic approximations still have an important role to

play in Bayesian inference.
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Starter:
a taste of background
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The parametric framework

• Random sample y = (y1, . . . , yn) from f (y ; θ), d−dimensional
parameter θ.
• Let θ = (ψ, λ), with ψ scalar and λ (d − 1)-dimensional

nuisance parameters.
• Given a prior density π(θ) = π(ψ, λ), Bayesian inference for ψ

is based on the marginal posterior density

πm(ψ|y) ∝
∫
π(ψ, λ)L(ψ, λ) d λ

with L(ψ, λ) likelihood function for (ψ, λ).
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The framework of interest

• It is of interest to test the precise (or sharp) null hypothesis

H0 : ψ = ψ0 against H1 : ψ 6= ψ0

• Possible examples: ψ is the stress-strength reliability and the
null hypothesis is H0 : ψ = 0 .5 ; ψ is a regression coefficient
and the null hypothesis is H0 : ψ = 0 ; non-inferiority and
superiority testing, with ψ difference of means, or odds ratios,
or hazard ratios . . .
• The usual approach relies on the Bayes Factor (BF), which

measures the ratio of posterior to prior odds in favor of H0 .
But:
I undetermined when using improper priors
I Jeffreys-Lindley paradox
I lacks calibration (its finite sampling distribution is unknown

and may depend on nuisance parameters)
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The goal

• To overcome these limitations, recent alternative Bayesian
measures of evidence for testing precise null hypotheses:
1. the Full Bayesian Significance Test (FBST) or e−value
2. the Bayesian Discrepancy measure (BDM)

• We mix these measures of evidence with suitable objective
matching priors (to match desiderable frequentist properties):
1. median matching prior, that mantains the invariance of the

posterior mode and of a HPD
2. strong matching prior, so that a frequentist one-sided p−value

coincides with a Bayesian posterior survivor probability

• In problems with a large number of nuisance parameters,
matching priors have a role to play since they eliminate the
need to elicitate on the nuisance parameter.
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First course:
two Bayesian measures of evidence

SISBAYES, September 4, 2025 7/ 31



1. Full Bayesian Significance Test

• Pereira & Stern (1999) provide a measure of evidence for the full
Bayesian Significance test (FBST) in favour of H0 , based on a
specific loss function. Thus the decision made is the action
that minimizes the corresponding posterior risk.
• In practice, from πm(ψ|y), given the set

Ty(ψ) = {ψ : πm(ψ|y) ≥ πm(ψ0 |y)}, the FBST in favour of H0
is

pπ = 1− Pπ(ψ ∈ Ty(ψ))

where Pπ(·) denotes posterior probability.
• The null hypothesis H0 is accepted whenever pπ is large

enough. Journal of Statistical Computation and Simulation 5

Figure 1. Shaded area: EV for the precise hypothesis H0 : ψ = ψ0.

Consider the marginal posterior distribution (2) for the parameter of interest ψ , and consider
the set

T(y) = {ψ : πm(ψ | y) ≥ πm(ψ0 | y)}. (10)

Starting from πm(ψ | y), the Pereira–Stern measure of evidence in favour of H0 can be computed
as (Figure 1)

EV = 1− Prπ (ψ ∈ T(y)), (11)

where Prπ (·) denotes posterior probability, and the null hypothesis H0 is accepted whenever EV
is large enough.
A first-order approximation for Equation (11) is simply given by Pereira et al.,[6]

EV O(n−1/2)= 2#

⎛

⎜⎝
ψ0 − ψ̂

√
jp(ψ̂)−1

⎞

⎟⎠ . (12)

In practice, it iswell known that Equation (12) is often inaccurate, in particularwhen the dimension
of λ is large with respect to the sample size. Moreover, it forces the marginal posterior distribution
to be symmetric.
The following theorem provides the higher order approximation for EV based on the tail area

approximation (4).

Theorem 1 The third-order approximation of the measure of evidence (11) used in the FBST is

EV =̇ 1− #(r∗B(ψ0)) + #(r∗B(ψ
∗
0 )). (13)

Proof Let us assume, without loss of generality, that ψ0 is smaller than the posterior mode of
πm(ψ | y) (as in Figure 1), and let ψ∗

0 be the value of the parameter such that πm(ψ∗
0 | y) =

πm(ψ0 | y). Then

EV =
∫ ψ0

−∞
πm(ψ | y) dψ +

∫ +∞

ψ∗
0

πm(ψ | y) dψ .

Using Equation (4), we can compute EV as in Equation (13), with r∗B(ψ) defined in Equation (5).
Note that the higher order approximation (13) does not call for any condition on the prior

π(ψ , λ), i.e. it can be also improper, and on the corresponding marginal posterior πm(ψ | y). !
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2. Bayesian Discrepancy Measure

• The BDM (Bertolino et al 2024) is defined as

δH = 1− 2∆ = 1− 2 min

{∫ ψ0

−∞
πm (ψ|y) d ψ, 1−

∫ ψ0

−∞
πm (ψ|y) d ψ

}
where ∆ can interpreted as the posterior probability of a "tail" event
concerning only H0 , assessing about how "central" the hypothesis H0 is.

• Alternative definition for δH :
Let m1 be the posterior median and consider the interval defined as [A]
IE = (−∞, ψ0 ) if ψ0 < m1 or as [B] IE = (ψ0 ,+∞) if m1 < ψ0 .
Then, the BDM of the hypothesis H0 can be computed as

δH = 1− 2 P(ψ ∈ IE |y) = 1− 2
∫

IE

πm (ψ|y) d ψ
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2. Bayesian Discrepancy Measure (cont.)

• 1− δH gives the posterior probability of an equi-tailed credible interval for
ψ that contains ψ0 .

• High values of δH indicate strong evidence against H0 , while small values
suggest data consistency with H0 .

• When H0 is false δH is more likely to approach 1 than 0. Thresholds can
be set to interpret δH .

• The BDM is invariant under invertible monotonic reparametrizations.
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FBST vs BDM

FBST BDM
1− pπ represents the posterior δH represents the posterior
probability of a HPD CI for ψ probability of an equi-tailed CI for ψ
asymptotic consistency asymptotic consistency
pπ is not invariant while δH is invariant
the e−value is invariant (but not
with respect marginalizations)
simple extension for d > 1 see you in Padova! January 7-9, 2026

skew2026.stat.unipd.it

• The practical computation of the FBST and BDM requires numerical
integration and the elicitation on (ψ, λ).

• Numerical integration can be tackled by resorting to asymptotic
approximations.
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First-order approximation

• A first-order approximation for δH or 1− pπ is simply

2 Φ

∣∣∣∣∣∣ ψ0 − ψ̂√
jp(ψ̂)−1

∣∣∣∣∣∣
− 1

with ψ̂ MLE of ψ and jp(ψ) = −`(2)
p (ψ) profile observed information.

• To first-order, δH agrees numerically with 1− p-value based on the profile
Wald statistic and also with 1− pπ.

• In practice, this approximation may be inaccurate, in particular for a small
sample size or large number of nuisance parameters, since it fails to
account for potential posterior asymmetry and skewness.
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Beyond Gaussian:
Higher-order asymptotic approximations

• Asymptotic arguments are widely used in Bayesian inference, based on
developments of so-called higher-order asymptotics (Ventura & Reid
2014).

• They provides very accurate approximations to posterior distributions and
to summary quantities of interest, including tail areas and credible
regions. Moreover, they are useful for the derivation of matching priors.

• The key tool is the Laplace approximation

πm (ψ|y) =̈
1√
2π
|jp(ψ̂)|1/2 exp{`p(ψ)− `p(ψ̂)}

|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2

π(ψ, λ̂ψ)

π(ψ̂, λ̂)

where jλλ(ψ, λ) is the (λ, λ)−block of the observed information from the
full log-likelihood and =̈ indicates that accuracy is of order O(n−3/2).
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Beyond Gaussian (cont.)

• Starting from the Laplace approximation, the O(n−3/2) approximation to
the tail area probability is∫ ∞

ψ0

πm (ψ|y) d ψ =̈ Φ(r∗B (ψ0 ))

with rp(ψ) = sign(ψ̂ − ψ)[2(`p(ψ̂)− `p(ψ))]1/2 profile likelihood root and

r∗B (ψ) = rp(ψ) +
1

rp(ψ)
log

qB(ψ)

rp(ψ)
,

qB(ψ) = `′p(ψ)|jp(ψ̂)|−1/2 |jλλ(ψ, λ̂ψ)|1/2

|jλλ(ψ̂, λ̂)|1/2

π(ψ̂, λ̂)

π(ψ, λ̂ψ)
.

• Note that using r∗B (ψ) an (1−α) equi-tailed credible interval for ψ can be
computed as CI = {ψ : |r∗B (ψ)| ≤ z1−α/2}, with z1−α/2 quantile of the
standard normal distribution, and in practice it can reflect asymmetries of
the posterior.

• Moreover, the marginal posterior median can be computed as the solution
in ψ of the estimating equation r∗B (ψ) = 0 .
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Beyond Gaussian (cont.)

• Using the tail area approximation, third-order approximations for the
FBST and the BDM can be derived.

• For the FBST, assuming without loss of generality that ψ0 is smaller than
the MAP, we have (Cabras et al 2015)

pπ =̈ 1− Φ(r∗B (ψ0 )) + Φ(r∗B (ψ∗0 ))

with ψ∗0 such that πm (ψ∗0 |y) = πm (ψ0 |y).

• For the BDM we have (Bortolato et al 2025)

δH =̈ 2Φ(|r∗B (ψ0 )|)− 1

• When πm (ψ|y) is symmetric we have

pπ =̈ 2(1− Φ(r∗B (ψ0 ))) =̈ 1− δH

• Note that these approximations do not call for any condition on the prior
π(ψ, λ).
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Main course:
the mix of matching priors with FBST and BDM
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Matching priors

• In the presence of nuisance parameters, starting from the Laplace’s
approximation it is possible to define a general posterior distribution for ψ
of the form

π∗(ψ|y) ∝ π∗(ψ)Lp(ψ)

where π∗(ψ) is a prior distribution on ψ only.

• Bayesian inference based on pseudo-likelihoods has been widely discussed
and motivated in the literature.

• Especially when the dimension of λ is large, there are two advantages in
using π∗(ψ|y):

1. the elicitation over λ is not necessary
2. the computation of integrals is circumvented

• Here we focus on matching priors for ψ.

• Examples of matching priors are for posterior quantiles, for credible
regions and for prediction.

• Here we consider median and strong matching priors.
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1. Median matching prior for the FBST

• The FBST and the e−value in the presence of nuisance
parameters are not invariant.
• We want to find a matching prior π∗(ψ) that ensures the

invariance of the MAP. As a consequence, the invariance
extends to HPDs, as well as the FBST.
• To this end we focus on the median modification of the profile

score equation, whose solution respects equivariance under
monotone reparameterizations.
• The median modification of the profile score does not rely on

finiteness of the MLE, thereby effectively preventing infinite
estimates.
• Thus, for Bayesian inference with π∗(ψ) we have a proper

posterior also in the case of monotone likelihoods.
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1. Median matching prior for the FBST (cont.)

• In practice, we impose that the MAP of π∗(ψ|y) coincides
with a refined version of the MLE, obtained as the solution of
the median modified score function.
• The modified version of the profile score function is

tp(ψ) = `′p(ψ) + m(ψ, λ̂ψ)

where m(ψ, λ) is a suitable correction term of order O(1),
given by

m(ψ, λ) = −κ1ψ +
κ3ψ

6κ2ψ

where κ1ψ, κ2ψ and κ3ψ are the first three cumulants of `′p(ψ).

• For the estimator ψ̃p, defined as the solution of tp(ψ) = 0 ,
parameterization equivariance holds under interest respecting
reparameterizations.
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1. Median matching prior for the FBST (cont.)

• We look for a matching prior π∗(ψ) such that

∂ log π∗(ψ)

∂ψ
= m(ψ, λ̂ψ)

Thus π∗(ψ) is known through its first derivative.
• The posterior based on the median matching prior can be

written as

π∗(ψ|y) ∝ exp

(
`p(ψ) +

∫
m(ψ, λ̂ψ) d ψ

)
• The invariant FBST is

p∗π = 1− Pπ(ψ ∈ T ∗y (ψ))

where T ∗y (ψ) = {ψ : π∗(ψ|y) ≥ π∗(ψ0 |y)}.

• Computation of p∗π with simulation approaches: ABC with ψ̃p
or tp(ψ) as summary statistics (see Ruli at al 2020), or Manifold
MCMC methods (see Bortolato & Ventura 2024).
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2. Strong matching priors for BDM

• A so-called strong-matching prior ensures that a frequentist
one-sided p−value coincides with a Bayesian posterior survivor
probability to a high degree of approximation, in the marginal
posterior density.
• When using a strong matching prior, the marginal posterior

density can be written as

πm
m (ψ|y) ∝ exp

(
−1

2
r ∗p (ψ)2

) ∣∣∣∣ sp(ψ)

rp(ψ)

∣∣∣∣
where sp(ψ) = `

(1)
p (ψ)/jp(ψ̂)1/2 is the profile score statistic and

r∗p (ψ) = rp(ψ) + 1
rp(ψ)

log
qp(ψ)

rp(ψ)
is the frequentist modified profile

likelihood root, with qp(ψ) suitably defined correction term.
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2. Strong matching priors for BDM (cont.)

• The tail area can be approximated to third-order as

Pm (ψ ≥ ψ0 |y) =̈ Φ(r∗p (ψ0 ))

• A remarkable advantage of πm
m (ψ|y) and Φ(r ∗p (ψ0 )) is that the

expressions automatically include the matching prior, without
requiring its explicit computation.
• With a strong matching prior, an asymptotic equi-tailed

credible interval for ψ can be computed as
CI = {ψ : |r ∗p (ψ)| ≤ z1−α/2}, i.e., as a confidence interval for
ψ based on r ∗p (ψ), and the posterior median can be computed
as the solution of r ∗p (ψ) = 0 .
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2. Strong matching priors for BDM (cont.)

• A third-order approximation of the BDM is

δ∗H =̈ 1− 2 min{Φ(r∗p (ψ0 )), 1− Φ(r∗p (ψ0 ))} = 2 Φ(|r∗p (ψ0 )|)− 1

• In this case
δ∗H = 1− p∗r

where p∗r is the p-value based on r ∗p (ψ).
• Thus, when using strong matching priors there is an

agreement between Bayesian and frequentist testing
hypothesis, point and interval estimation.
• From a practical point of view, the computation of δ∗H can be

easily performed in practical problems using the
likelihoodAsy package of the statistical software R.
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Dessert:
two little tasters of examples
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1. FBST: Multivariate regression model

• Regression model

Yij = β0 + β1xi1 + β2xi2 + εij , i = 1, . . . , n, j = 1, 2,

with εi ∼ N2(0 ,Σ), Σ = σ2
(

1 ρ
ρ 1

)
positive definite matrix.

• The null hypothesis is H0 : ρ = 0 .9, with ρ0 = 0 .95 and n = 20 .

• Comparison of the posterior distributions based on the median matching
prior, the predictive matching prior and an inverse-Wishart prior for the
covariance matrix Σ with one degree of freedom, identity position,
uniform prior on the regression parameters.

• The expressions of the modified profile estimating functions are obtained
from Bortolato et al (2023). Hence, the Manifold MCMC method can be
used to obtain the implied posteriors, whose approximation is comparable
to that of any MCMC sampler. We used 20000 iterations.
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1. FBST: Multivariate regression model (cont.)

• The FBST are 0.25 with the median matching prior, 0.36 for the
predictive matching prior and 0.60 with the inverse-Wishart prior.

• The BDM provides 1− δh =0.12 with the median matching prior, 0.04 for
the predictive matching prior and 0.87 with the inverse-Wishart prior.

• The only invariant results are those with the median matching prior.
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2. BDM: Heteroscedastic one-way random effects model

• Analysis of data from inter-laboratory study with the one-way
random effects model with heteroscedastic error variance.
• There are m laboratories, with nj observations at the j -th

laboratory, for j = 1, . . . ,m . The model is

yij = µ+ bj + εij ,

where yij denotes the i -th observation at the j -th laboratory,
and bj and εij are independent random variables with
distribution bj ∼ N (0 , σ2) and εij ∼ N (0 , σ2

j ), respectively.
• Typically, the parameter of interest is the consensus mean µ,

which is also the mean of yij , i = 1, . . . , nj and j = 1, . . . ,m .
• The remaining (m + 1) parameters of the model, i.e.,

within-laboratory variances (σ2
1 , . . . , σ

2
m) and the between

laboratory variability σ2, are nuisance parameters.
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Example 1: Heteroscedastic one-way random effects model

Data on the Ki-67 protein on adrenocortical tumors, coming from an
inter-laboratory study. It is of interest to carry out inference on the mean of the
Ki-67 level (on logarithmic scale).
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For H0 : µ = 0 vs H1 : µ 6= 0 , we obtain δ∗H = 1− p∗r = 1− 0 .062 = 0 .938 .

In this case, FBST also coincides, up to four decimal places, to 1− δH , in view
of the symmetry of the marginal posterior of µ.

The first-order approximation gives δH = 1− pw = 1− 0 .002 = 0 .998 .

Hence, first-order results suggest that there is a strong evidence against H0 .
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Coffee:
conclusions & discussion
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Coffee: conclusions & discussion

• Approximate analytical tools have still a role to play in the modern era of
Bayesian statistics, where high computational power allows the use of
stochastic simulation techniques to obtain exact (i.e., simulation
consistent) answers.

• In problems with a large number of nuisance parameters, approximate
Bayesian computations provide important quantities of the posterior
distribution with very little computational effort, in a fraction of the time
required for a full simulation approach. Moreover, sensitivity and
influence analyses may also be carried out quickly within this framework.

• Advantages of the proposed approximations are that no elicitation on the
nuisance parameters is required.

• Although the approximations described in this paper are derived from
asymptotic considerations, they perform extremely well in moderate or
even small sample situations.

• When using objective Bayesian procedures based on strong matching
priors and higher-order asymptotics, there is an agreement between
Bayesian and frequentist point and interval estimation, and also in the
significance measure BDM. This is not true in general with the FSBT.
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Thanks for your time and Hope you enjoyed your meal!
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