Multivariate Species Sampling Process (mSSP)

Beatrice Franzolini
(Joint work with Lijoi, Prünster and Rebaudo)

Main References:

- Franzolini, B., Lijoi, A., Prünster, I., & Rebaudo, G. (2025). Multivariate species sampling models. arXiv preprint arXiv:2503.24004.
- Franzolini, B., Lijoi, A., Prünster, I., & Rebaudo, G. (2025+). Partially exchangeable random partition structures (Ongoing).

Species sampling processes (Pitman, 1996; Balocchi, Favaro & Naulet, 2024)

(Univariate) Species Sampling Process

A random probability \tilde{P} is a species sampling process if

$$ilde{P} \stackrel{\textit{a.s.}}{=} \sum_{h \geq 1} \pi_h \delta_{ heta_h} + (1 - \sum_{h \geq 1} \pi_h) P_0$$

- where $(\theta_h)_{h\geq 1} \perp (\pi_h)_{h\geq 1}$
- \triangleright $\theta_h \stackrel{\text{iid}}{\sim} P_0$ with P_0 non-atomic
- ▶ the probability weights $(\pi_h)_{h\geq 1} \sim \mathcal{L}_{\pi}$ are such that $\sum_{h\geq 1} \pi_h \leq 1$ a.s. We write $\tilde{P} \sim \textit{SSP}(\mathcal{L}_{\pi}, P_0)$.

Species sampling processes (Pitman, 1996; Balocchi, Favaro & Naulet, 2024)

(Univariate) Species Sampling Process

A random probability \tilde{P} is a species sampling process if

$$ilde{P} \stackrel{\textit{a.s.}}{=} \sum_{h \geq 1} \pi_h \delta_{\theta_h} + (1 - \sum_{h \geq 1} \pi_h) P_0$$

- ightharpoonup where $(\theta_h)_{h\geq 1} \perp (\pi_h)_{h\geq 1}$
- \triangleright $\theta_h \stackrel{\text{iid}}{\sim} P_0$ with P_0 non-atomic
- ▶ the probability weights $(\pi_h)_{h\geq 1} \sim \mathcal{L}_{\pi}$ are such that $\sum_{h\geq 1} \pi_h \leq 1$ a.s. We write $\tilde{P} \sim \textit{SSP}(\mathcal{L}_{\pi}, P_0)$.

SSP in Bayesian statistics

- ▶ Used for **species sampling problems**, which involve unknown discrete distributions.
- ▶ Used in mixture models with likelihood $p(y \mid \tilde{P}) = \int_{\mathbb{X}} k(y; x) \tilde{P}(dx)$
 - for density estimation
 - ► for model-based clustering

They include all most used mixture models (finite mixtures, mixtures of finite mixtures, infinite mixtures)

Species sampling processes (Pitman, 1996; Balocchi, Favaro & Naulet, 2024)

(Univariate) Species Sampling Process

A random probability \tilde{P} is a species sampling process if

$$ilde{P} \stackrel{\textit{a.s.}}{=} \sum_{h > 1} \pi_h \delta_{ heta_h} + (1 - \sum_{h > 1} \pi_h) P_0$$

- \blacktriangleright where $(\theta_h)_{h>1} \perp (\pi_h)_{h>1}$
- \bullet $\theta_h \stackrel{\text{iid}}{\sim} P_0$ with P_0 non-atomic
- ▶ the probability weights $(\pi_h)_{h\geq 1} \sim \mathcal{L}_{\pi}$ are such that $\sum_{h\geq 1} \pi_h \leq 1$ a.s. We write $\tilde{P} \sim \textit{SSP}(\mathcal{L}_{\pi}, P_0)$.

SSP in Bayesian statistics

- ▶ Used for **species sampling problems**, which involve unknown discrete distributions.
- ▶ Used in mixture models with likelihood $p(y \mid \tilde{P}) = \int_{\mathbb{T}} k(y; x) \tilde{P}(dx)$
 - for density estimation
 - ► for model-based clustering

They include all most used mixture models (finite mixtures, mixtures of finite mixtures, infinite mixtures)

More importantly: they are a structural class

SSPs are in one-to-one correspondence with partitions of (infinitely) exchangeable objects

Exchangeable partitions and SSP

More importantly:

 $\mathsf{SSPs} \ \mathsf{are} \ \mathsf{in} \ \mathsf{one}\text{-}\mathsf{to}\text{-}\mathsf{one} \ \mathsf{correspondence} \ \mathsf{with} \ \mathsf{partitions} \ \mathsf{of} \ \mathsf{(infinitely)} \ \mathsf{exchangeable} \ \mathsf{objects}$

Exchangeable partitions and SSP

More importantly:

SSPs are in one-to-one correspondence with partitions of (infinitely) exchangeable objects

Exchangeable partition

A collection of random partitions $\Pi = (\Pi_n)_{n \geq 1}$, where, Π_n is a partition of $\{1, 2, \dots, n\}$, for every $n \in \mathbb{N}$, is **exchangeable**, if

- $ightharpoonup \Pi_n$ can be obtained eliminating the element n+1 from Π_{n+1}
- for any permutation σ of n elements, $^a\mathbb{P}(\Pi_n=p_n)=\mathbb{P}(\Pi_n=\sigma(p_n))$

We write $\Pi \sim \text{EPPF}$.

 $^{a}\sigma(p_{n})$ denotes the partition obtained permuting the elements in the sets of p_{n} accordingly to σ

E.g.,
$$n = 5$$
, and, $\sigma = (1, 5, 4, 2)$

$$\mathbb{P}\left(\Pi_{5} = \begin{array}{c} 3 \\ 1 \\ 4 \end{array}\right) = \mathbb{P}\left(\Pi_{5} = \begin{array}{c} 3 \\ 5 \\ 2 \end{array}\right)$$

Exchangeable partitions, SSP, and species sampling sequences

More importantly:

SSPs are in one-to-one correspondence with exchangeable partitions

Sampling observations (X_1, \ldots, X_n) , for any n, via the hierarchical model

$$X_i \mid \tilde{P} \stackrel{iid}{\sim} \tilde{P} \qquad \tilde{P} \sim SSP(\mathcal{L}_{\pi}, P_0)$$

or

- step. 1 sampling an exchangeable random partition Π_n ,
- step. 2 independently sampling unique values $\{X_1^*, \dots, X_K^*\}$ for each set from a non-atomic prob. measure P_0 .

produces the same law for the exchangeable sequence $(X_1, \ldots, X_n, \ldots)$, called species sampling sequence.

Exchangeable partitions, SSP, and species sampling sequences

More importantly:

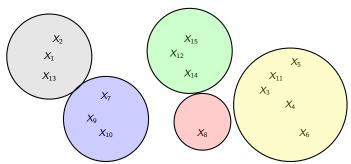
SSPs are in one-to-one correspondence with exchangeable partitions

Sampling observations (X_1, \ldots, X_n) , for any n, via the hierarchical model

$$X_i \mid \tilde{P} \stackrel{iid}{\sim} \tilde{P} \qquad \tilde{P} \sim SSP(\mathcal{L}_{\pi}, P_0)$$

or

- step. 1 sampling an exchangeable random partition Π_n ,
- step. 2 independently sampling unique values $\{X_1^*,\ldots,X_K^*\}$ for each set from a non-atomic prob. measure P_0 .



produces the same law for the exchangeable sequence $(X_1, \ldots, X_n, \ldots)$, called species sampling sequence.

Exchangeable partitions, SSP, and species sampling sequences

More importantly:

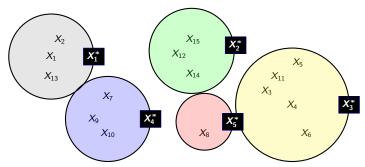
SSPs are in one-to-one correspondence with exchangeable partitions

Sampling observations (X_1, \ldots, X_n) , for any n, via the hierarchical model

$$X_i \mid \tilde{P} \stackrel{iid}{\sim} \tilde{P} \qquad \tilde{P} \sim SSP(\mathcal{L}_{\pi}, P_0)$$

or

- step. 1 sampling an exchangeable random partition Π_n ,
- step. 2 independently sampling unique values $\{X_1^*,\ldots,X_K^*\}$ for each set from a non-atomic prob. measure P_0 .



produces the same law for the exchangeable sequence $(X_1, \ldots, X_n, \ldots)$, called species sampling sequence.

Why do we need a multivariate version?

- ▶ Because SSPs are appropriate **only** to describe and model exchangeable sequences / data $(X_1, ..., X_n, ...)$.
- ▶ Because many discrete processes for data beyond exchangeability have been proposed, but no unifying class has been studied, leaving many open questions.

Partial exchangeability

Let us consider

- ▶ The observable sequence $\mathbf{X} = (X_1, X_2, \dots, X_n, \dots)$
- Additional information: group division $d = (d_1, \dots, d_n, \dots,)$, with $d_i \in \{1, \dots, J\}$

X is partially exchangeable with respect to **d** if for any $n \ge 1$ and for **d**-invariant permutation σ , i.e., $d_{\sigma(i)} = d_i$,

$$(X_1,\ldots,X_n)\stackrel{d}{=}(X_{\sigma(1)},\ldots,X_{\sigma(n)})$$

Theorem (de Finetti, 1938)

$$\text{if } \sum_{i=1}^{+\infty}\mathbb{1}(d_i=j)=\infty, \forall j,$$

X is partially exchangeable with respect to d, if and only if

$$egin{aligned} X_i \mid ilde{P}_1, \ldots, ilde{P}_J \stackrel{\textit{ind}}{\sim} ilde{P}_{d_i} & ext{for } i = 1, \ldots, n \ (ilde{P}_1, \ldots, ilde{P}_J) \sim Q \end{aligned}$$

Dependent nonparametric priors

Additive structures

► First proposed by Müller, Quintana & Rosner (2004) for the Dirichlet process:

$$ilde{P}_j = \epsilon_j \ Q_0 + (1 - \epsilon_j) Q_j, \quad Q_j \stackrel{\mathit{ind}}{\sim} \mathsf{DP}(lpha_j, P_0).$$

- For general normalized random measures by Lijoi, Nipoti & Prunster (2014).
- 2. Hierarchical structures
 - First proposed by Teh, Jordan, Beal & Blei (2006) for the Dirichlet process: Hierarchical Dirichlet process (HDP).

$$\tilde{P}_j \mid Q \stackrel{iid}{\sim} \mathsf{DP}(\alpha, Q), \quad Q \sim \mathsf{DP}(\alpha_0, P_0).$$

- Generalization of HDP includes HPYP (Teh, 2006; Battiston, Favaro & Teh, 2018; Camerlenghi, Lijoi, Orbanz & Prünster, 2019), HNCRM (Camerlenghi, Lijoi, Orbanz & Prünster, 2019; Argiento, Cremaschi & Vannucci, 2020), HSSP (Bassetti, Casarin & Rossini, 2020).
- 3. Nested structures
 - First proposed by Rodriguez, Dunson & Gelfand (2008) for the Dirichlet process with stick-breaking representation: Nested Dirichlet process (NDP)

$$\tilde{P}_j \mid Q \stackrel{iid}{\sim} Q, \quad Q \sim \mathsf{DP}(\alpha, \mathsf{DP}(\beta, P_0)).$$

- Generalization to Nested NCRM and PYP (Camerlenghi, Dunson, Lijoi, Prünster & Rodriguez, 2019).
- Composition of the previous classes: semi-HDP (Beraha, Guglielmi & Quintana, 2021), HHDP (Lijoi, Prünster & Rebaudo, 2023), nCAM (Denti, Camerlenghi, Guindani & Mira, 2023).
- Other single-atoms dependent processes (MacEachern, 1999, 2000; Quintana, Müller, Jara & MacEachern, 2022): tree stick-breaking (Horiguchi et al., 2022), Compound random measures (Griffin & Leisen, 2017), vectors of normalized independent finite point processes (Colombi et al., 2023).
- 6. Normalized completely random vector (Catalano, Lijoi & Prünster, 2021).

Correlation as measure of dependence

Correlation

The most popular measure of dependence is correlation: since typically

$$\operatorname{corr}(\tilde{P}_1(A), \tilde{P}_2(A)),$$

does not depend on *A* it is taken as a measure of overall dependence. Statistical implication: borrowing of information!

Examples:

► Hierarchical Dirichlet process (HDP)

$$\operatorname{corr}(\tilde{P}_1(A), \tilde{P}_2(A)) = \frac{c+1}{c+1+c_0}$$

► Nested Common Atom model (n-CAM)

$$\operatorname{corr}(\tilde{P}_1(A), \tilde{P}_2(A)) = 1 - \frac{\beta \alpha}{(2\beta + 1)(1 + \alpha)}$$

Partially exchangeable partitions

Given a group division $\mathbf{d} = (d_1, \dots, d_n, \dots)$ with $d_i \in \{1, \dots, J\}$,

Partially exchangeable partition

A collection of random partitions $\Pi = (\Pi_n)_{n \geq 1}$, where, Π_n is a partition of $\{1, 2, \ldots, n\}$, for every $n \in \mathbb{N}$, is partially exchangeable with respect to d, if

- $ightharpoonup \Pi_n$ can be obtained eliminating the element n+1 from Π_{n+1}
- for any **d**-invariant permutation σ of n elements, $\mathbb{P}(\Pi_n = p_n) = \mathbb{P}(\Pi_n = \sigma(p_n))$

We write $\Pi \sim pEPPF$.

E.g.,
$$n = 5$$
, $d = (1, 1, 1, 2, 2)$, and $\sigma = (1, 5)$

E.g.,
$$n = 5$$
, $d = (1, 1, 1, 2, 2)$, and $\sigma = (1, 2)(4, 5)$

$$\mathbb{P}\left(\Pi_5 = \begin{array}{c} 3 \\ 1 \\ 4 \end{array}\right) = \mathbb{P}\left(\Pi_5 = \begin{array}{c} 3 \\ 2 \\ 5 \end{array}\right) = \mathbb{P}\left(\Pi_5 = \begin{array}{c} 3 \\ 1 \\ 1 \end{array}\right)$$

Given the sampling mechanism of the Bayesian model

$$X_i \mid (\tilde{P}_1, \dots, \tilde{P}_J) \stackrel{ind}{\sim} \tilde{P}_{d_i} \qquad (\tilde{P}_1, \dots, \tilde{P}_J) \sim Q$$
 (1)

Definition mSSP

 $(\tilde{P}_1,\ldots,\tilde{P}_J)$ is a multivariate species sampling process (mSSP), if sampling ${\pmb X}$ from (1) is equivalent to step. 1 sampling a partially exchangeable random partition Π_n , step. 2 independently sampling unique values $\{X_1^*,\ldots,X_K^*\}$ for each set from a non-atomic prob. measure P_0 .

$$X_{2}, d_{2} = 1$$
 $X_{15}, d_{15} = 1$
 $X_{1}, d_{1} = 1$ $X_{12}, d_{12} = 2$ $X_{5}, d_{5} = 2$
 $X_{13}, d_{13} = 1$ $X_{14}, d_{14} = 2$ $X_{11}, d_{11} = 1$
 $X_{7}, d_{7} = 1$ $X_{3}, d_{3} = 2$
 $X_{4}, d_{4} = 1$
 $X_{5}, d_{5} = 2$
 $X_{11}, d_{11} = 1$
 $X_{12}, d_{13} = 2$
 $X_{13}, d_{13} = 2$
 $X_{14}, d_{14} = 2$
 $X_{15}, d_{15} = 2$
 $X_{17}, d_{17} = 1$
 $X_{17}, d_{17} = 1$
 $X_{18}, d_{18} = 2$ $X_{18}, d_{18} = 2$
 $X_{18}, d_{18} = 2$ $X_{18}, d_{18} = 2$

Given the sampling mechanism of the Bayesian model

$$X_i \mid (\tilde{P}_1, \dots, \tilde{P}_J) \stackrel{ind}{\sim} \tilde{P}_{d_i} \qquad (\tilde{P}_1, \dots, \tilde{P}_J) \sim Q$$
 (1)

Definition mSSP

 $(\tilde{P}_1,\ldots,\tilde{P}_J)$ is a multivariate species sampling process (mSSP),

if sampling X from (1) is equivalent to

- step. 1 sampling a partially exchangeable random partition Π_n ,
- step. 2 independently sampling unique values $\{X_1^*, \dots, X_K^*\}$ for each set from a non-atomic prob. measure P_0 .

$$X_5, d_5 = 2$$
 $X_{11}, d_{11} = 1$
 $X_3, d_3 = 2$
 $X_4, d_4 = 1$
 $X_6, d_6 = 1$

Given the sampling mechanism of the Bayesian model

$$X_i \mid (\tilde{P}_1, \dots, \tilde{P}_J) \stackrel{ind}{\sim} \tilde{P}_{d_i} \qquad (\tilde{P}_1, \dots, \tilde{P}_J) \sim Q$$
 (1)

Definition mSSP

 $(\tilde{P}_1,\ldots,\tilde{P}_J)$ is a multivariate species sampling process (mSSP),

if sampling X from (1) is equivalent to

- step. 1 sampling a partially exchangeable random partition Π_n ,
- step. 2 independently sampling unique values $\{X_1^*, \dots, X_K^*\}$ for each set from a non-atomic prob. measure P_0 .

Characterization theorem 1

Given d, Π is a partially exchangeable random partition if and only if it exists a function f s.t.

$$\mathbb{P}(\Pi_n = \{A_1, \dots, A_K\}) = f \begin{pmatrix} n_{1,1} & n_{1,2} & \dots & n_{1,j} & \dots & n_{1,J} \\ n_{2,1} & n_{2,2} & \dots & n_{2,j} & \dots & n_{2,J} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ n_{k,1} & n_{k,2} & \dots & n_{k,j} & \dots & n_{k,J} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ n_{k,1} & n_{k,2} & \dots & n_{k,J} & \dots & n_{k,J} \end{pmatrix}$$

where f is a function satisfying the three following conditions:

$$\text{(f-i)} \ \ f: \bigcup_{n=1}^{+\infty} \bar{\rho}_n^*(I_1,\ldots,I_J) \to [0,1],$$

$$(\Rightarrow \text{sufficiency of the matrix of counts})$$

(f-ii)
$$f(1)=1$$
 and $f(\pmb{n})=\sum_{l=1}^{K+1}f(\pmb{n}^{lj+}),$ (\Rightarrow close to marginalization)

$$(\mathsf{f\text{-}iii}) \ \ f((\textit{\textbf{n}}_1,\ldots,\textit{\textbf{n}}_J)) = f((\alpha(\textit{\textbf{n}}_1),\ldots,\alpha(\textit{\textbf{n}}_J))) \\ (\Rightarrow \text{invariance to sets labels})$$

f is called partially exchangeable partition probability function (pEPPF).

Characterization theorem 2

 $(\tilde{P}_1,\ldots,\tilde{P}_J)$ is a mSSP if and only if

$$\tilde{P}_j \stackrel{\text{a.s.}}{=} \sum_{h \geq 1} \pi_{j,h} \delta_{\theta_h} + \left(1 - \sum_{h \geq 1} \pi_{j,h}\right) P_0, \qquad \text{for } j = 1, \dots, J,$$

where θ_h are i.i.d from P_0 and independent from $m{\pi}=(\pi_{j,h})_{j,h}.$

Characterization theorem 2

 $(\tilde{P}_1,\ldots,\tilde{P}_J)$ is a mSSP if and only if

$$\tilde{P}_j \stackrel{\text{a.s.}}{=} \sum_{h \geq 1} \pi_{j,h} \delta_{\theta_h} + \left(1 - \sum_{h \geq 1} \pi_{j,h}\right) P_0, \qquad \text{for } j = 1, \dots, J,$$

where θ_h are i.i.d from P_0 and independent from $\boldsymbol{\pi} = (\pi_{i,h})_{i,h}$.

Characterization theorem 3

 $(\tilde{P}_1,\ldots,\tilde{P}_J)$ is a mSSP if and only if the predictive distribution of \boldsymbol{X} is given by:

$$X_1 \sim P_0 \qquad X_{n+1} \mid \mathbf{X}_{1:n} \sim \sum_{l=1}^{K} p_{d_{n+1},l}(\mathbf{n}) \, \delta_{X_j^*} + p_{d_{n+1},K+1}(\mathbf{n}) \, P_0$$
 (2)

where

(p-i)
$$p_{i,l}(n) \geq 0$$
,

(p-ii)
$$\sum_{l=1}^{K+1} p_{j,l}(\mathbf{n}) = 1$$
, $\forall \mathbf{n}$ and $\forall j = 1, \ldots J$,

(p-iii)
$$p_{j,l}(\mathbf{n})p_{j',r}(\mathbf{n}^{lj+}) = p_{j',r}(\mathbf{n})p_{j,l}(\mathbf{n}^{rj'+}), \forall j,j' \in \{1,\ldots,J\} \text{ and } \forall l,r,l' \in \{1,\ldots,J\}$$

(p-iv)
$$p_{j,l}((\mathbf{n}_1,\ldots,\mathbf{n}_J)) = p_{j,\alpha^{-1}(l)}((\alpha(\mathbf{n}_1),\ldots,\alpha(\mathbf{n}_J))).$$

The collection of functions $p_{i,l}$ is called **multivariate prediction probability function** (mPPF).

Correlation structure implied by mSSM

Warning: Change of notation for observations for sake of clarity.

Correlation structure implied by a mSSM

If $(\tilde{P}_1, \tilde{P}_2) \sim \text{mSSP}$, then, for any A s.t. $0 < P_0(A) < 1$, we obtain

$$\operatorname{corr}\{\tilde{P}_{1}(A),\tilde{P}_{2}(A)\} = \frac{\mathbb{P}(X_{1,1} = X_{2,1})}{\sqrt{\mathbb{P}(X_{1,1} = X_{1,2})}\sqrt{\mathbb{P}(X_{2,1} = X_{2,2})}} \geq 0.$$

Moreover, if the marginal distributions of $(\tilde{P}_1,\tilde{P}_2)$ are equal, we get

$$\operatorname{corr}\{\tilde{P}_{1}(A), \tilde{P}_{2}(A)\} = \frac{\mathbb{P}(X_{1,1} = X_{2,1})}{\mathbb{P}(X_{1,1} = X_{1,2})} = \frac{\mathbb{P}(\text{"tie across groups"})}{\mathbb{P}(\text{"tie within a group"})}$$

Take home messages:

- ▶ Rather than saying that "typically" $\operatorname{corr}\{\tilde{P}_1(A), \tilde{P}_2(A)\}$ does not depend on A, now we know it is true for the whole class of mSSP \Longrightarrow it is a function of probabilities of sharing atoms regardless of their specific values
- ightharpoonup corr $\{\tilde{P}_1(A), \tilde{P}_2(A)\} \geq 0$ and also

$$\operatorname{corr}(X_{1,1}, X_{2,1}) = \mathbb{P}(X_{1,1} = X_{2,1}) \geq 0.$$

The dependence boils down to the sharing of underlying common atoms.

Table: Correlation, tie probabilities and extreme cases.

Process	Correlation	P(Ties Across)	P(Ties Within)	Indep.	Exchang.
HDP	$\frac{1+\alpha}{1+\alpha+\alpha_0}$	$\frac{1}{1 + \alpha_0}$	$\frac{1 + \alpha + \alpha_0}{(1 + \alpha)(1 + \alpha_0)}$	$\alpha_0 \to +\infty$	$\alpha \to +\infty$
HPY	$\frac{(1 + \alpha)(1 - \sigma_0)}{(1 - \sigma\sigma_0) + \alpha(1 - \sigma_0) + \alpha_0(1 - \sigma)}$	$\frac{1 - \sigma_0}{1 + \alpha_0}$	$\frac{(1 - \sigma \sigma_0) + \alpha(1 - \sigma_0) + \alpha_0(1 - \sigma)}{(1 + \alpha)(1 + \alpha_0)}$	$\alpha_0 \rightarrow +\infty$ or $\sigma_0 \rightarrow 1$	$\alpha \to +\infty$ or $\sigma \to 1$
HDM	$\frac{(1 + \tau_0)(1 + \tau M)}{(1 + \tau M)(1 + \tau_0 M_0) - \tau \tau_0(M - 1)(M_0 - 1)}$	$\frac{1 + \tau_0}{1 + \tau_0 M_0}$	$\frac{(1+\tauM)(1+\tau_0M_0)-\tau\tau_0(M-1)(M_0-1)}{(1+\tauM)(1+\tau_0M_0)}$	$M_0 \to +\infty$	$M \to +\infty$
HGN	$\frac{\gamma_0(\gamma + 1)}{(\gamma + \gamma_0)}$	$\frac{2\gamma_0}{\gamma_0 + 1}$	$\frac{2(\gamma + \gamma_0)}{(\gamma + 1)(\gamma_0 + 1)}$	$\gamma_0 \to 0$	$\gamma \to 0$
HSSP	$\frac{EPPF_{1,2}^{(2)}(2)}{EPPF_{1,2}^{(2)}(2)+EPPF_{2,1}^{(2)}(1,1)EPPF_{1,0}^{(2)}(2)}$	$EPPF_{1,0}^{(2)}(2)$	$EPPF_{1,1}^{(2)}(2) + EPPF_{2,1}^{(2)}(1,1) EPPF_{1,0}^{(2)}(2)$	$EPPF_{1,0}^{(2)}(2) = 0$	$EPPF_{1,1}^{(2)}(2) = 0$
NDP	$\frac{1}{1+\alpha}$	$\frac{1}{(1+\alpha)(1+\beta)}$	$\frac{1}{1+\beta}$	$\alpha \to +\infty$	$\alpha \to 0$
NPY	$\frac{1-\sigma_{lpha}}{1+lpha}$	$\frac{(1 - \sigma_{\alpha})(1 - \sigma_{\beta})}{(1 + \alpha)(1 + \beta)}$	$\frac{1 - \sigma_{\beta}}{1 + \beta}$	$\alpha \to +\infty$ or $\sigma_{\alpha} \to 1$	$(\alpha, \sigma_{\alpha}) \rightarrow$ $\rightarrow (0, 0)$
NDM	$\frac{1 + \tau_{\alpha}}{1 + \tau_{\alpha} M_{\alpha}}$	$\frac{(1 + \tau_{\alpha})(1 + \tau_{\beta})}{(1 + \tau_{\alpha}M_{\alpha})(1 + \tau_{\beta}M_{\beta})}$	$\frac{1 + \tau_{\beta}}{1 + \tau_{\beta} M_{\beta}}$	$M_{\alpha} \to +\infty$	$M_{\alpha} \rightarrow 1$
NGN	$\frac{2\gamma_{\alpha}}{\gamma_{\alpha}+1}$	$\frac{4\gamma_{\alpha}\gamma_{\beta}}{(\gamma_{\alpha} + 1)(\gamma_{\beta} + 1)}$	$\frac{2\gamma_{\beta}}{\gamma_{\beta}+1}$	$\gamma_\alpha \to 0$	$\gamma_\alpha \to 1$
NSSP	$\frac{EPPF_{1,0}^{(2)}(2)}{\frac{e_j e_k}{1 + \alpha_0}}$	$EPPF_{1,0}^{(2)}(2)EPPF_{1,1}^{(2)}(2)$	$EPPF_{1,1}^{(2)}(2)$	$EPPF_{1,0}^{(2)}(2) = 0$	$EPPF_{1,0}^{(2)}(2) = 1$
+DP	$ \frac{\frac{\frac{\epsilon_j \epsilon_k}{1 + \alpha_0}}{1 + \alpha_0}}{\sqrt{\left(\frac{\epsilon_j^2}{1 + \alpha_0} + \frac{(1 - \epsilon_j)^2}{1 + \alpha_j}\right)\left(\frac{\epsilon_k^2}{1 + \alpha_0} + \frac{(1 - \epsilon_k)^2}{1 + \alpha_k}\right)}} $	$\frac{\epsilon_j\epsilon_k}{1+\alpha_0}$	$\frac{\epsilon_j^2}{1+\alpha_0} + \frac{(1-\epsilon_j)^2}{1+\alpha_j}$	$\epsilon = 0$	$\epsilon=1$
+PY	$\frac{\epsilon_j \epsilon_k (1 - \sigma_0)}{1 + \alpha_0}$ $\sqrt{\left(\frac{\epsilon_j^2 (1 - \sigma_0)}{1 + \alpha_0} + \frac{(1 - \epsilon_j)^2 (1 - \sigma_j)}{1 + \alpha_0}\right) \left(\frac{\epsilon_k^2 (1 - \sigma_0)}{1 + \alpha_0} + \frac{(1 - \epsilon_k)^2 (1 - \sigma_k)}{1 + \alpha_k}\right)}$	$\frac{\epsilon_{j}\epsilon_{k}\left(1-\sigma_{0}\right)}{1+\alpha_{0}}$	$\frac{c_j^2\left(1-\sigma_0\right)}{1+\alpha_0}+\frac{\left(1-\epsilon_j\right)^2\left(1-\sigma_j\right)}{1+\alpha_j}$	$\epsilon = 0$	$\epsilon=1$
+DM	$\frac{\epsilon_j \epsilon_k (1 + \tau_0)}{\sqrt{\left(\frac{\epsilon_j^2 (1 + \tau_0)}{1 + \tau_0 M_0} + \frac{(1 - \epsilon_j)^2 (1 + \tau_j)}{1 + \tau_0 M_0} + \frac{(1 - \epsilon_j)^2 (1 + \tau_j)}{1 + \tau_1 M_1}\right)}{\left(\frac{\epsilon_k^2 (1 + \tau_0)}{1 + \tau_0 M_0} + \frac{(1 - \epsilon_k)^2 (1 + \tau_k)}{1 + \tau_k M_k}\right)}$	$\frac{\epsilon_{j}\epsilon_{k}(1+\tau_{0})}{1+\tau_{0}M_{0}}$	$\frac{\epsilon_j^2(1+\tau_0)}{1+\tau_0 M_0} + \frac{(1-\epsilon_j)^2(1+\tau_j)}{1+\tau_j M_j}$	$\epsilon = 0$	$\epsilon=1$
+GN	$\frac{\frac{\epsilon_j \epsilon_k 2 \cdot 2 \cdot p}{\gamma_0 + 1}}{\sqrt{\left(\frac{\epsilon_j^2 2 \cdot \gamma_0}{\gamma_0 + 1} + \frac{(1 - \epsilon_j)^2 2 \cdot \gamma_j}{\gamma_j + 1}\right)\left(\frac{\epsilon_k^2 2 \cdot \gamma_0}{\gamma_0 + 1} + \frac{(1 - \epsilon_k)^2 2 \cdot \gamma_k}{\gamma_k + 1}\right)}}$	$\frac{\epsilon_{j}\epsilon_{k}2\gamma_{0}}{\gamma_{0}+1}$	$\frac{\epsilon_j^22\gamma_0}{\gamma_0+1}+\frac{(1-\epsilon_j)^22\gamma_j}{\gamma_j+1}$	$\epsilon=0$	$\epsilon=1$
+SSP	. $\epsilon_{j'4}$ EPPF $_{j,0}^{(2)}(2)$ $\sqrt{(\epsilon_j^2$ EPPF $_{j,0}^{(2)}(2)+(1-\epsilon_j)^2$ EPPF $_{j,0}^{(2)}(2)+(1-\epsilon_j)^2$ EPPF $_{j,0}^{(2)}(2)+(1-\epsilon_j)^2$ EPPF $_{j,0}^{(2)}(2)$	$\epsilon_j \epsilon_k EPPF_{1,0}^{(2)}(2)$	$\epsilon_j^2 EPPF_{1,0}^{(2)}(2) + (1 - \epsilon_j)^2 EPPF_{1,1}^{(2)}(2)$	$\epsilon=0$	$\epsilon=1$
GM-DP	$\frac{(1-z)c}{1+c}{}_3F_2(a,1,1;b,b;1)^*$	$\frac{(1-z)c}{(1+c)^2} {}_3F_2(a, 1, 1; b, b; 1)^{**}$	$\frac{1}{1+c}$	z = 1	z = 0
GM-σ	(1-z)g(c,z)***	$(1-z)(1-\sigma)g(c,z)$	$1 - \sigma$		
HHDP	$1 - \frac{\alpha\beta_0}{(1 + \alpha)(\beta_0 + \beta + 1)}$	$\frac{1}{\beta_0 + 1} + \frac{\beta_0}{(1 + \alpha)(1 + \beta)(1 + \beta_0)}$	$\frac{1 + \beta + \beta_0}{(1 + \beta)(1 + \beta_0)}$	$(\alpha, \beta_0) \rightarrow$ $\rightarrow (+\infty, +\infty)$	$\alpha \rightarrow 0$
nCAM	$1 - \frac{\beta \alpha}{(2\beta + 1)(1 + \alpha)}$	$\frac{1}{1+\alpha}\left(\frac{1}{1+\beta} + \frac{\alpha}{2\beta+1}\right)$	$\frac{1}{1+\beta}$	None	$\alpha \rightarrow 0$

Correlation structure

Questions: Are there models for which:

- ightharpoonup corr $(\tilde{P}_1(A), \tilde{P}_2(A)) = 1$ if and only if $\tilde{P}_1 = \tilde{P}_2$ a.s. i.e. full exchangeability?
- $ightharpoonup \operatorname{corr}(\tilde{P}_1(A), \tilde{P}_2(A)) = 0$ if and only if $\tilde{P}_1 \perp \tilde{P}_2$?

Extreme cases

Under mild conditions which are satisfied by all dependent processes used in Bayesian statistics:

- $ightharpoonup \operatorname{corr}(\tilde{P}_1(A), \tilde{P}_2(A)) = 1$ if and only if $\tilde{P}_1 = \tilde{P}_2$ a.s. i.e. full exchangeability:
- $ightharpoonup \operatorname{corr}(\tilde{P}_1(A), \tilde{P}_2(A)) = 0$ if and only if $\tilde{P}_1 \perp \tilde{P}_2$.
- ⇒ justifies the use of correlation as measure of dependence.

Predictive schemes

If $X \sim mSSM$ with pEPPF, then a multivariate Chinese restaurant process (mCRP) (i.e., a sequential sampling scheme that allows sampling from the predictive distribution) can be derived as

$$X_{j,l_j+1} \mid (\boldsymbol{X}_{j,1:l_j})_{j=1}^J = \begin{cases} X_l^* & \text{w.p. } \frac{\text{pEPPF}_D^{(n+1)}(\boldsymbol{n}_1,...,[n_{j,1},...,n_{j,l}+1,...,n_{1,D}],...,\boldsymbol{n}_J)}{\text{pEPPF}_D^{(n)}(\boldsymbol{n}_1,...,[n_{j,1},...,n_{j,l},...,n_{j,D}],...,\boldsymbol{n}_J)} \\ X_{new}^* & \text{w.p. } \frac{\text{pEPPF}_D^{(n)}(\boldsymbol{n}_1,...,[n_{j,1},...,n_{j,l},...,n_{j,D}],...,\boldsymbol{n}_J)}{\text{pEPPF}_D^{(n)}(\boldsymbol{n}_1,...,[n_{j,1},...,n_{j,l},...,n_{j,D}],...,\boldsymbol{n}_J)}, \end{cases} ,$$

where (X_1^*,\ldots,X_D^*) are the unique values in $(X_{j,1:l_j})_{j=1}^J$ recorded in order of arrival by group, $n=\sum_i l_i$, and X_{new}^* is a new species.

Remark: Intractable in general, but exploiting variable augmentations of pEPPF as a mixture of EPPFs we recover tractable composition of CRP (as CRF for HDP).

Augmented pEPPF

▶ If $(P_1, ..., P_J)$ is an hierarchical SSP, then

$$\mathsf{pEPPF}_{D,\mathsf{aug}}^{(n)}(\textit{\textbf{n}}_1,\ldots,\textit{\textbf{n}}_J,\,\ell,\textit{\textbf{q}}) = \mathsf{EPPF}_{D,0}^{(\ell_{\cdot,\cdot})}(\ell_{\cdot,1},\ldots,\ell_{\cdot,D}) \prod_{j=1}^{J} \mathsf{EPPF}_{\ell_{j,\cdot},j}^{(l_j)}(\textit{\textbf{q}}_{j,1},\ldots,\textit{\textbf{q}}_{j,\ell_{j,\cdot}})$$

▶ If $(P_1, ..., P_J)$ is an nested SSP, then

$$\mathsf{pEPPF}_{D,\mathsf{aug}}^{(n)}(\textit{\textbf{n}}_1,\ldots,\textit{\textbf{n}}_J,\,\ell,\,\textit{\textbf{q}}) = \mathsf{EPPF}_{R,0}^{(J)}(\ell_1,\ldots,\ell_R) \prod_{r=1}^n \mathsf{EPPF}_{D_r}^{(l_r^*)}(q_1,\ldots,q_{D_r},)$$

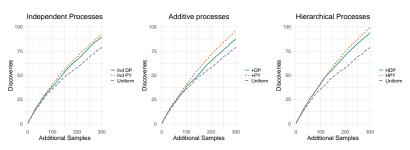
▶ If $(P_1, ..., P_J)$ is an additive SSP, then

$$\mathsf{pEPPF}_{D,\mathsf{aug}}^{(n)}(\textit{\textbf{n}}_1,\ldots,\textit{\textbf{n}}_J,\,\boldsymbol{\ell},\,\boldsymbol{q}) = \prod_{j=1}^J \epsilon_j^{\ell_0} (1-\epsilon_j)^{\ell_j} \prod_{j=0}^J \mathsf{EPPF}_{D_j,j}^{(\ell_j)}(q_{j,1},\ldots,q_{j,D_j})$$

•

rmSSP illustration

- We illustrate some rmSSP performance in devising a strategy for sequentially selecting sampling sites across various locations to maximize the diversity of observed species in a trees dataset (Battiston, Favaro & Teh, 2018).
- Data: species of trees observed in South America recorded from 4 groups, according to spatial location.
- The goal of maximizing the number of species discovered via sequential sampling can be formulated as a multi-armed bandit problem, where each arm is constituted by a certain site/population, and a unitary reward is gained when a new species is observed.



Number of species discovered as a function of additional sample sizes in the rmSSPs and the uniform model. The uniform model selects arms randomly.

Joint work with

Some References

Some References

- Antoniak (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2, 1152–1174.
- Argiento, Cremaschi & Vannucci, (2020). Hierarchical normalized completely random measures to cluster grouped data. *J. Am. Stat. Assoc.*, **115**, 318–333.
- Ascolani, Lijoi, Rebaudo & Zanella (2023). Clustering consistency with Dirichlet process mixtures. Biometrika, 110, 551-558.
- Balocchi, Favaro & Naulet (2024). Bayesian nonparametric inference for "species-sampling" problems. arXiv:2203.06076.
- Bassetti, Casarin & Rossini (2020). Hierarchical species sampling models. *Bayesian Anal.*, **15**, 809–838.
- Battiston, Favaro & Teh (2018). Multi-armed bandit for species discovery: a Bayesian nonparametric approach. J. Am. Stat. Assoc., 113, 455–466.
- Beraha, Guglielmi & Quintana (2021). The semi-hierarchical Dirichlet process and its application to clustering homogeneous distributions. *Bayesian Anal.*, **16**, 1187–1219.
- Camerlenghi, Dunson, Lijoi, Prünster & Rodriguez (2019). Latent nested nonparametric priors. (With discussion) *Bayesian Anal.* **15**, 1303-1356.
- Camerlenghi, Lijoi, Orbanz & Prünster (2019). Distribution theory for Hierarchical Processes. *Annal. Statist.* **47**, 67-92.
- Catalano, Lijoi & Prünster (2021). Measuring dependence in the Wasserstein distance for Bayesian nonparametric models. *Ann. Statist* **49** 2916-2947.
- Cifarelli & Regazzini (1978). Nonparametric statistical problems under partial exchangeability. *Quad. Ist. Matem. Fin. Univ. di Torino Ser. III* 12, 1-36.
- De Blasi, Favaro, Lijoi, Mena, Prünster & Ruggiero (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE TPAMI 37 212-229.
- Denti, Camerlenghi, Guindani & Mira (2023). A common atom model for the Bayesian nonparametric analysis of nested data. *J. Am. Stat. Assoc.*, **118**, 405–416.
- Ferguson (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-30.
- de Finetti (1931). Probabilismo. Logos 14, 163-219. [translated in *Erkenntnis* 31, 169–223, 1989].
- de Finetti (1938). Sur la condition d'équivalence partielle. Act.sci. ind. 739, 5-18.

- Franzolini, B., Lijoi, A., Prünster, I., & Rebaudo, G. (2025). Multivariate species sampling models. arXiv preprint arXiv:2503.24004.
- Franzolini, B., Lijoi, A., Prünster, I., & Rebaudo, G. (2025+). Partially exchangeable random partition structures (Ongoing).
- Horiguchi, Chan & Ma (2022). Tree stick-breaking priors for covariate-dependent mixture models. arXiv:2208.02806.
- Lee, Quintana, Müller & Trippa (2013). Defining predictive probability functions for species sampling models. *Stat. Sci.*, **28**, 209–222
- Lijoi, Nipoti & Prünster (2014). Bayesian inference with dependent normalized completely random measures. Bernoulli 20, 1260-1291.
- Lijoi, Prünster & Rebaudo (2023). Flexible clustering via hidden hierarchical Dirichlet priors. *Scand. J. Stat.*, **50**, 213-234.
- Griffin & Leisen (2017). Compound random measures and their use in Bayesian non-parametrics. J. R. Stat. Soc. Series B Stat. Methodol., 79, 525–545.
- MacEachern (1999). Dependent nonparametric processes. In ASA Proceedings.
- MacEachern (2000). Dependent Dirichlet processes. OSU Tech. Report.
- Müller, Quintana & Rosner (2004). A method for combining inference across related nonparametric Bayesian models. *J. Roy. Statist. Soc. Ser. B*, **66**, 735-749.
- Pitman (1996). Some developments of the Blackwell-MacQueen urn scheme. *IMS Lecture Notes Monogr.* **30**, 245-267.
- Pitman (2006). *Combinatorial Stochastic Processes.* Lecture Notes in Math., vol.1875, Springer, Berlin.
- Quintana, Müller, Jara & MacEachern (2022). The dependent Dirichlet process and related models. Stat. Sci., 37, 24–41.
- Regazzini (1978). Intorno ad alcune questioni relative alla definizione del premio secondo la teoria della credibilità. *Giorn. Istit. Ital. Attuari*, **41**, 77–89.
- Rodríguez, Dunson & Gelfand (2008). The nested Dirichlet process. J. Amer. Statist. Assoc. 103, 1131-1144.
- Teh & Jordan (2010). Hierarchical Bayesian nonparametric models with applications. In *Bayesian Nonparametrics*, 158–207. Cambridge Univ. Press.
- Teh, Jordan, Beal & Blei (2006). Hierarchical Dirichlet processes. *J. Amer. Statist. Assoc.* **101**, 1566–1581.

Notation

$$\rho_K(I_1,\dots,I_J) = \{ \pmb{n} : \pmb{n} \in \mathbb{N}_0^{K \times J}, \ \sum\nolimits_{l=1}^K \pmb{n}_{l,j} = I_j \ \text{ and } \ \sum\nolimits_{j=1}^J \pmb{n}_{l,j} > 0 \text{ for } l = 1,\dots,K \text{ and } j = 1,\dots,J \}$$

However, not all matrices in $\rho_K(I_1,\ldots,I_J)$ correspond to a partition (in order of appearance), when such partition exists we say that \boldsymbol{n} is a *compatible matrix of counts* accordingly to \mathcal{D}_n (or, shortly, \boldsymbol{n} is \mathcal{D}_n -compatible). To clarify why not all the matrices in $\rho_K(I_1,\ldots,I_J)$ correspond to a partition, we provide the following two examples.

Example Let n = 7, $d = \{1, 1, 1, 2, 2, 2, 2\}$ and K=2. The matrix

$$n = \begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix}$$

is not a compatible matrix of counts accordingly to d. The order of appearance requires $n_{1,1} > 0$. **Example** Let n = 7, $D_n = (1, 2, 1, 1, 2, 2, 2)$ and K=3. The matrix

$$\mathbf{n} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 4 \end{pmatrix}$$

is not a compatible matrix of counts accordingly to \mathcal{D}_n . The order of appearance requires $n_{1,2} + n_{2,2} > 0$.

Finally, we denote with

$$\rho_{K}^{*}(\textit{I}_{1},\ldots,\textit{I}_{J})=\{\textit{\textbf{n}}:\textit{\textbf{n}}\in\rho_{K}(\textit{I}_{1},\ldots,\textit{I}_{J}),\;\textit{\textbf{n}}\;\text{is}\;\textit{\textit{\mathfrak{D}_{n}-compatible}}\}$$

and

$$\bar{\rho}_n^*(I_1,\ldots,I_J) = \bigcup_{K=1}^n \rho_K^*(q_1,\ldots,q_J).$$