Multivariate Species Sampling Process (mSSP)

Beatrice Franzolini
(Joint work with Lijoi, Priinster and Rebaudo)

Main References:

» Franzolini, B., Lijoi, A., Priinster, |., & Rebaudo, G. (2025). Multivariate species
sampling models. arXiv preprint arXiv:2503.24004.

» Franzolini, B., Lijoi, A., Priinster, |., & Rebaudo, G. (2025+). Partially exchange-
able random partition structures (Ongoing).

Universita
Bocconi
BIDSA

Bocconi Institute
for Data Science and Analytics




Species sampling processes (Pitman, 1996; Balocchi, Favaro & Naulet, 2024)

(Univariate) Species Sampling Process

A random probability Pisa species sampling process if
~ a.s.
P = E 7Th59h + (1 - E 7Th)P0
h>1 h>1
» where (9;,)/,21 A (Wh)hzl

> 0, E Py with Py non—atomic
P the probability weights (7)s>1 ~ L are such that Zh>1 7 < 1as.
We write P ~ SSP(L, Py). -
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Species sampling processes (Pitman, 1996; Balocchi, Favaro & Naulet, 2024)

(Univariate) Species Sampling Process

A random probability Pisa species sampling process if
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SSP in Bayesian statistics
P Used for species sampling problems, which involve unknown discrete distributions.
» Used in mixture models with likelihood p(y | P) = fx k(y; x)P(dx)
P for density estimation
» for model-based clustering

They include all most used mixture models (finite mixtures, mixtures of finite mixtures,
infinite mixtures)

More importantly: they are a structural class

SSPs are in one-to-one correspondence with partitions of (infinitely) exchangeable objects
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E SPECIES SAMPLING

Exchangeable partitions and SSP

More importantly:
SSPs are in one-to-one correspondence with partitions of (infinitely) exchangeable objects

Exchangeable partition

A collection of random partitions M = (MN,),>1,
where, M, is a partition of {1,2,...,n}, for every n € N,
is exchangeable, if

» 1, can be obtained eliminating the element n + 1 from MM,
» for any permutation o of n elements,® P(M, = p,) = P(M, = o(pn))
We write 1 ~ EPPF.

?o(pn) denotes the partition obtained permuting the elements in the sets of p,
accordingly to o

E.g., n=5, and, o0 = (1,5,4,2)
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UNIVARIATE SPECIES SAMPLING

Exchangeable partitions, SSP, and species sampling sequences

More importantly:

SSPs are in one-to-one correspondence with exchangeable partitions

Sampling observations (Xi, ..., X,), for any n, via the hierarchical model
X | PP P~ SSP(Ly,Py)

or

step. 1  sampling an exchangeable random partition I,
step. 2 independently sampling unique values {X[", ..., X¢} for each set
from a non-atomic prob. measure Py.

X2 X15
X12
X3 Xia X1
X; X3
Xa
Xo
X10 Xs Xs
produces the same law for the exchangeable sequence (X1, ..., Xy, ...), called species

sampling sequence.
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More importantly:
SSPs are in one-to-one correspondence with exchangeable partitions
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RIATE SPECIES SAMPLING

Exchangeable partitions, SSP, and species sampling sequences

More importantly:
SSPs are in one-to-one correspondence with exchangeable partitions

Sampling observations (Xi, ..., X,), for any n, via the hierarchical model
X | PEP P~ SSP(Ly, Po)

or

step. 1  sampling an exchangeable random partition I,
step. 2 independently sampling unique values {X{", ..., X} for each set
from a non-atomic prob. measure Py.

produces the same law for the exchangeable sequence (X1, ..., Xy, ...), called species
sampling sequence.
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Why do we need a multivariate version?

» Because SSPs are appropriate only to describe and model exchangeable
sequences / data (X1,...,Xn,...).

» Because many discrete processes for data beyond exchangeability have been
proposed, but no unifying class has been studied, leaving many open questions.



Partial exchangeability

Let us consider
» The observable sequence X = (X1, X2,..., Xn,...)

» Additional information: group division d = (d1,...,dn,...,),
with d; € {1,...,J}

X is partially exchangeable with respect to d if for any n > 1 and for d-invariant permutation
o, i.e., da(,-) = d,',

d
(Xt Xn) = (Xoq@)s - -+ s Xo(n)

Theorem (de Finetti, 1938)

+oo
if > 1(di =) = 00,V

i=1
X is partially exchangeable with respect to d, if and only if

ind ~

Xi | Pr,...,P, < Py fori=1,...,n
(Pr,...,P)~Q




PARTIAL EXC

Dependent nonparametric priors
1. Additive structures

> First proposed by Miiller, Quintana & Rosner (2004) for the Dirichlet process:

- ind
Pi=¢Q+(1-¢)Q, @~ DP(ay, Po).
P For general normalized random measures by Lijoi, Nipoti & Prunster (2014).
2. Hierarchical structures

P First proposed by Teh, Jordan, Beal & Blei (2006) for the Dirichlet process: Hierarchical
Dirichlet process (HDP).

B | @ X DP(a, Q), Q@ ~ DP(ao, Py).

P Generalization of HDP includes HPYP (Teh, 2006; Battiston, Favaro & Teh, 2018;
Camerlenghi, Lijoi, Orbanz & Priinster, 2019), HNCRM (Camerlenghi, Lijoi, Orbanz &
Priinster, 2019; Argiento, Cremaschi & Vannucci, 2020), HSSP (Bassetti, Casarin &
Rossini, 2020).

3. Nested structures

P First proposed by Rodriguez, Dunson & Gelfand (2008) for the Dirichlet process with
stick-breaking representation: Nested Dirichlet process (NDP)
5 id
Fi1@~Q, @~ DP(a,DP(8, Py)).
» Generalization to Nested NCRM and PYP (Camerlenghi, Dunson, Lijoi, Priinster &
Rodriguez, 2019).

4. Composition of the previous classes: semi-HDP (Beraha, Guglielmi & Quintana, 2021), HHDP
(Lijoi, Priinster & Rebaudo, 2023), nCAM (Denti, Camerlenghi, Guindani & Mira, 2023).

5. Other single-atoms dependent processes (MacEachern, 1999, 2000; Quintana, Miiller, Jara &
MacEachern, 2022): tree stick-breaking (Horiguchi et al., 2022), Compound random measures
(Griffin & Leisen, 2017), vectors of normalized independent finite point processes (Colombi et al.,
2023).

6. Normalized comﬁleteli random vector (Catalano, Lijoi & Priinster, 2021).



Correlation as measure of dependence

Correlation

The most popular measure of dependence is correlation: since typically

corr(Py(A), P2(A)),

does not depend on A it is taken as a measure of overall dependence.
Statistical implication: borrowing of information!

Examples:
» Hierarchical Dirichlet process (HDP)

- " c+1
Pi(A), Py(A) = ————
corr(Pr(A). Pa(4) = — 5
» Nested Common Atom model (n-CAM)
Ba

corr(P1(A), P2(A)) =1 — @B+ 1)(1+a)



Partially exchan (Feable partitions

Given a group division d = (d1,...,d,,...) with di € {1,...,J},

Partially exchangeable partition

A collection of random partitions M = (M,)s>1,
where, MM, is a partition of {1,2, ..., n}, for every n € N,
is partially exchangeable with respect to d, if

P 1, can be obtained eliminating the element n + 1 from MM,
» for any d-invariant permutation o of n elements, P(, = p,) = P(MN, = o(p,))
We write N ~ pEPPF.

Eg,.n=5d=(1,1,1,2,2),ando=(1,5)

00+ 00

Eg.,n=5d=(1,1,1,2,2), and o = (1, 2)(4,5)

00+ OB

=]
o |
&

=
|
&
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Multivariate species sampling processes

Given the sampling mechanism of the Bayesian model

- -~ ind ~. - -
Xi | (Pr,...,P))~ Py (Pr,....P)~Q

Definition mSSP

(Py, ..., P))is a multivariate species sampling process (mSSP),

if sampling X from (1) is equivalent to
step. 1  sampling a partially exchangeable random partition I1,,
step. 2 independently sampling unique values {X{", ..., X<} for each set
from a non-atomic prob. measure Py.

@

Xo,do =1 Xis,d15 =1
_ Xip,d1p =2
Xi,dv =1 12,912 Xs,ds = 2
Xi3,di3 =1 X4, dig =2 Xi1,di1 =1
X7,d7 =1 X3, d3 =2
Xa,ds = 1
Xo, dg = 2

X10, d1o = 2 Xg, dg = 2 Xe,do =1
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Multivariate species sampling processes

Characterization theorem 1

Given d, MM is a partially exchangeable random partition if and only if it exists a function f s.t.

N 2 cee nyj cee nJ
na 1 ny > o ny L. ny
P(M, = {A1, ..., Ac}) =f : : C ; " :
ng1 ng 2 aao N j aoo ng g
ng 1 ng 2 0006 ng j 006 ng gy

where f is a function satisfying the three following conditions:

+o0
(fi) U pn(h,. .., 1) —[0,1], (= sufficiency of the matrix of counts)
n=1
K+1
(f-ii) f(1)=1and f(n) = Z ("), (= close to marginalization)
=1
(F-iii) F((n1, ..., ny)) = f((a(n),...,a(n))) (= invariance to sets labels)

f is called partially exchangeable partition probability function (pEPPF).
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CHARACTERIZATION THEOREMS

Characterization theorem 2

(P1,...,P;y)is a mSSP if and only if

ﬁya':s'g 7;.n86, + 1—5 min | Po,  forj=1,...,J,

h>1 h>1

where 0 are i.i.d from Py and independent from 7 = (7} 1)) 5.




Characterization theorem 2

., P)) is a mSSP if and only if

Bz E mj,h00, + 1—5 mjn | Po,

h>1

(Py, ..
forj=1,...,J,

h>1

where 6}, are i.i.d from Py and independent from 7 = (7;,);, h-

v
Characterization theorem 3
. .E’J) is a mSSP if and only if the predictive distribution of X is given by:

(P, ..

K
Xoy1 | Xiin ~ E Pd,.1,1() Ox= + Pd,,; k+1(n) Po (2

=1

X1~ Py

where
(p-i) pji(n) >0,
- K+1 .
(p-ii) Z/:J: pii(n)=1,Vnand Vj=1,...J,
(p-iii) pj,/(n)pj/,,(nﬁ*') = pj/,,(n)pj,/(n’j/*'), vj,j € {1,...,J} and VI,r,
., ny)) = pj~1ofx(,)((oz(n1)7 .. a(ny))).

(p-iv) pji((m, ..
The collection of functions p; ; is called multivariate prediction probability function (mPPF).

12 /23




Correlation structure implied by mSSM

Warning: Change of notation for observations for sake of clarity.

Correlation structure implied by a mSSM

If (,‘317 ,‘52) ~ mSSP, then, for any As.t. 0 < Py(A) < 1, we obtain

P(X1,1 = X2,1) _—

corr{ P,(A), P,(A)} = >
’ \/P(Xl,l = X1,2)\/IF’(X2,1 = Xz,2)

Moreover, if the marginal distributions of (P, P,) are equal, we get

P(Xi1 = Xp1) _ P("tie across groups”)

corr{P1(4), Po(A)} = P(X11 = Xi2)  P(“tie within a group ")

Take home messages:

» Rather than saying that “ typically " corr{P;(A), P,(A)} does not depend on A, now we
know it is true for the whole class of mMSSP = it is a function of probabilities of
sharing atoms regardless of their specific values

» corr{P1(A), P2(A)) > 0 and also

COI’I’()(Ll7 X211) = P(lel = X2,1) Z 0.

» The dependence boils down to the sharing of underlying common atoms.



TION THEC

Table: Correlation, tie probabilities and extreme cases.
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Correlation structure

Questions: Are there models for which:
> corr(P1(A), P2(A)) = 1 if and only if P, = P, a.s. i.e. full exchangeability?

> corr(P1(A), P2(A)) = 0 if and only if P, 1L Py?

Extreme cases

Under mild conditions which are satisfied by all dependent processes used in Bayesian
statistics:

> corr(Py(A), Py(A)) = 1 if and only if P, = P a.s.
i.e. full exchangeability;

> corr(Py(A), P2(A)) = 0 if and only if P, 1L P;.

= justifies the use of correlation as measure of dependence.



Predictive schemes

If X ~ mSSM with pEPPF, then a multivariate Chinese restaurant process (mCRP)
(i.e., a sequential sampling scheme that allows sampling from the predictive
distribution) can be derived as

1)
X+ w pEPPF R Sl 1seesnj 41,01 plyeeesny)
X1 | (X )_] _ ! pEPPF(l)("L Slnj1s--n gseunj plyeeeany)
X 1 )im1 = +
bl S, 17 j=1 X+ w.p pEPPFET+1 ([n1,00,[n},15---,15,15---s1}, D15+, [n5,0])
new e k)
pEPPF(E;’)(nl,...,[nj’l,...,nj,l7.4.,I'IJ"D],...,"J)
* * H B J B .
where (X[, ..., X5) are the unique values in (Xj 1.;);_; recorded in order of arrival by

group, n = Ej and X, is a new species.

Remark: Intractable in general, but exploiting variable augmentations of pEPPF as a
mixture of EPPFs we recover tractable composition of CRP (as CRF for HDP).



Augmented pEPPF

» If (P1,...,Py) is an hierarchical SSP, then

()
PEPPF). o

l. .
ny,...ony, £,q)=EPPFOS) (0, 0. D)HEPPF it aie)
» If (P1,...,Py) is an nested SSP, then

J ”
PEPPFY). (..., ny, & a) = EPPFLY (01, £) [ [ EPPFY (@, - ap, )
r=1

» If (P1,...,P,) is an additive SSP, then

Jj=1
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rmSSP illustration

P> We illustrate some rmSSP performance in devising a strategy for sequentially selecting
sampling sites across various locations to maximize the diversity of observed species in a
trees dataset (Battiston, Favaro & Teh, 2018).

» Data: species of trees observed in South America recorded from 4 groups, according to
spatial location.

» The goal of maximizing the number of species discovered via sequential sampling can be
formulated as a multi-armed bandit problem, where each arm is constituted by a certain
site/population, and a unitary reward is gained when a new species is observed.

Independent Processes Additive processes Hierarchical Processes

— Ind DP
== Ind PY
= Uniform

= Uniform = Uniform

Discoveries
o
g
Discoveries
+
3
2
Discoveries

25

0

300 0 300 0 300

00 200 100 200
Additional Samples Additional Samples

100 200
Additional Samples

Number of species discovered as a function of additional sample sizes in the rmSSPs and the
uniform model. The uniform model selects arms randomly.
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Notation
pK(Il,...,I_]):{":nENé(XJ, 27:1"’*1':,/' and Z;‘,:ln/,j>0for/:1,...,Kandj:
1,...,J}
However, not all matrices in px(li, ..., 1)) correspond to a partition (in order of appearance), when
such partition exists we say that n is a compatible matrix of counts accordingly to @, (or, shortly, n is
Dn-compatible). To clarify why not all the matrices in px(l, ..., 1) correspond to a partition, we

provide the following two examples.
Example Let n =7, d = {1,1,1,2,2,2,2}} and K=2. The matrix

is not a compatible matrix of counts accordingly to d. The order of appearance requires n;; > 0.
Example Let n =7, D, = (1,2,1,1,2,2,2) and K=3. The matrix

1 0
n=(1 0
1 4

is not a compatible matrix of counts accordingly to @,. The order of appearance requires
nio+npo >0
Finally, we denote with

pr(l, ..., 1,y ={n:n€ pk(h,..., 1), nis D,-compatible}

and

pn(h, ... )= UPZ(fh’quJ)
K=1
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