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Univariate species sampling

Species sampling processes (Pitman, 1996; Balocchi, Favaro & Naulet, 2024)
(Univariate) Species Sampling Process

A random probability P̃ is a species sampling process if

P̃ a.s.=
∑
h≥1

πhδθh + (1 −
∑
h≥1

πh)P0

▶ where (θh)h≥1 ⊥⊥ (πh)h≥1

▶ θh
iid∼ P0 with P0 non–atomic

▶ the probability weights (πh)h≥1 ∼ Lπ are such that
∑

h≥1
πh ≤ 1 a.s.

We write P̃ ∼ SSP(Lπ, P0).

SSP in Bayesian statistics
▶ Used for species sampling problems, which involve unknown discrete distributions.
▶ Used in mixture models with likelihood p(y | P̃) =

∫
X

k(y ; x)P̃(dx)

▶ for density estimation
▶ for model-based clustering

They include all most used mixture models (finite mixtures, mixtures of finite mixtures,
infinite mixtures)

More importantly: they are a structural class
SSPs are in one-to-one correspondence with partitions of (infinitely) exchangeable objects
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Univariate species sampling

Exchangeable partitions and SSP

More importantly:
SSPs are in one-to-one correspondence with partitions of (infinitely) exchangeable objects

Exchangeable partition

A collection of random partitions Π = (Πn)n≥1,
where, Πn is a partition of {1, 2, . . . , n}, for every n ∈ N,
is exchangeable, if
▶ Πn can be obtained eliminating the element n + 1 from Πn+1

▶ for any permutation σ of n elements,a P(Πn = pn) = P(Πn = σ(pn))
We write Π ∼ EPPF.

aσ(pn) denotes the partition obtained permuting the elements in the sets of pn
accordingly to σ

E.g., n = 5, and, σ = (1, 5, 4, 2)

P

Π5 = 1
3

4
2

5
 = P

Π5 = 5
3

2
1

4

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Univariate species sampling

Exchangeable partitions, SSP, and species sampling sequences
More importantly:
SSPs are in one-to-one correspondence with exchangeable partitions

Sampling observations (X1, . . . , Xn), for any n, via the hierarchical model

Xi | P̃ iid∼ P̃ P̃ ∼ SSP(Lπ, P0)
or

step. 1 sampling an exchangeable random partition Πn,
step. 2 independently sampling unique values {X∗

1 , . . . , X∗
K } for each set

from a non-atomic prob. measure P0.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13 X14

X15

X∗
1

X∗
2

X∗
3

X∗
4 X∗

5

produces the same law for the exchangeable sequence (X1, . . . , Xn, . . .), called species
sampling sequence.
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Why?

Why do we need a multivariate version?

▶ Because SSPs are appropriate only to describe and model exchangeable
sequences / data (X1, . . . , Xn, . . .).

▶ Because many discrete processes for data beyond exchangeability have been
proposed, but no unifying class has been studied, leaving many open questions.
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Partial exchangeability

Partial exchangeability

Let us consider

▶ The observable sequence X = (X1, X2, . . . , Xn, . . .)

▶ Additional information: group division d = (d1, . . . , dn, . . . , ),
with di ∈ {1, . . . , J}

X is partially exchangeable with respect to d if for any n ≥ 1 and for d-invariant permutation
σ, i.e., dσ(i) = di ,

(X1, . . . , Xn) d= (Xσ(1), . . . , Xσ(n))

Theorem (de Finetti, 1938)

if
+∞∑
i=1

1(di = j) = ∞, ∀j,

X is partially exchangeable with respect to d , if and only if

Xi | P̃1, . . . , P̃J
ind∼ P̃di for i = 1, . . . , n

(P̃1, . . . , P̃J ) ∼ Q
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Partial exchangeability

Dependent nonparametric priors
1. Additive structures

▶ First proposed by Müller, Quintana & Rosner (2004) for the Dirichlet process:

P̃j = ϵj Q0 + (1 − ϵj )Qj , Qj
ind
∼ DP(αj , P0).

▶ For general normalized random measures by Lijoi, Nipoti & Prunster (2014).
2. Hierarchical structures

▶ First proposed by Teh, Jordan, Beal & Blei (2006) for the Dirichlet process: Hierarchical
Dirichlet process (HDP).

P̃j | Q iid
∼ DP(α, Q), Q ∼ DP(α0, P0).

▶ Generalization of HDP includes HPYP (Teh, 2006; Battiston, Favaro & Teh, 2018;
Camerlenghi, Lijoi, Orbanz & Prünster, 2019), HNCRM (Camerlenghi, Lijoi, Orbanz &
Prünster, 2019; Argiento, Cremaschi & Vannucci, 2020), HSSP (Bassetti, Casarin &
Rossini, 2020).

3. Nested structures
▶ First proposed by Rodriguez, Dunson & Gelfand (2008) for the Dirichlet process with

stick-breaking representation: Nested Dirichlet process (NDP)

P̃j | Q iid
∼ Q, Q ∼ DP(α, DP(β, P0)).

▶ Generalization to Nested NCRM and PYP (Camerlenghi, Dunson, Lijoi, Prünster &
Rodriguez, 2019).

4. Composition of the previous classes: semi-HDP (Beraha, Guglielmi & Quintana, 2021), HHDP
(Lijoi, Prünster & Rebaudo, 2023), nCAM (Denti, Camerlenghi, Guindani & Mira, 2023).

5. Other single-atoms dependent processes (MacEachern, 1999, 2000; Quintana, Müller, Jara &
MacEachern, 2022): tree stick-breaking (Horiguchi et al., 2022), Compound random measures
(Griffin & Leisen, 2017), vectors of normalized independent finite point processes (Colombi et al.,
2023).

6. Normalized completely random vector (Catalano, Lijoi & Prünster, 2021).
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Open problems

Correlation as measure of dependence

Correlation

The most popular measure of dependence is correlation: since typically

corr(P̃1(A), P̃2(A)),

does not depend on A it is taken as a measure of overall dependence.
Statistical implication: borrowing of information!

Examples:
▶ Hierarchical Dirichlet process (HDP)

corr(P̃1(A), P̃2(A)) =
c + 1

c + 1 + c0

▶ Nested Common Atom model (n-CAM)

corr(P̃1(A), P̃2(A)) = 1 −
βα

(2β + 1)(1 + α)
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Multivariate species sampling processes

Partially exchangeable partitions
Given a group division d = (d1, . . . , dn, . . .) with di ∈ {1, . . . , J},

Partially exchangeable partition

A collection of random partitions Π = (Πn)n≥1,
where, Πn is a partition of {1, 2, . . . , n}, for every n ∈ N,
is partially exchangeable with respect to d , if
▶ Πn can be obtained eliminating the element n + 1 from Πn+1

▶ for any d -invariant permutation σ of n elements, P(Πn = pn) = P(Πn = σ(pn))
We write Π ∼ pEPPF.

E.g., n = 5, d = ( 1 , 1, 1, 2, 2 ), and σ = ( 1 , 5 )

P

Π5 = 1
3

4
2

5
 ̸= P

Π5 = 5
3

4
2

1


E.g., n = 5, d = (1, 1, 1, 2, 2), and σ = (1, 2)(4, 5)

P

Π5 = 1
3

4
2

5
 = P

Π5 = 2
3

5
1

4

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Multivariate species sampling processes

Multivariate species sampling processes

Given the sampling mechanism of the Bayesian model

Xi | (P̃1, . . . , P̃J ) ind∼ P̃di (P̃1, . . . , P̃J ) ∼ Q (1)

Definition mSSP

(P̃1, . . . , P̃J ) is a multivariate species sampling process (mSSP),
if sampling X from (1) is equivalent to

step. 1 sampling a partially exchangeable random partition Πn,
step. 2 independently sampling unique values {X∗

1 , . . . , X∗
K } for each set

from a non-atomic prob. measure P0.

X1, d1 = 1
X2, d2 = 1

X3, d3 = 2
X4, d4 = 1

X5, d5 = 2

X6, d6 = 1

X7, d7 = 1

X8, d8 = 2
X9, d9 = 2

X10, d10 = 2

X11, d11 = 1

X12, d12 = 2

X13, d13 = 1 X14, d14 = 2

X15, d15 = 1

X∗
1

X∗
2

X∗
3

X∗
4 X∗

5
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Characterization theorems

Multivariate species sampling processes

Characterization theorem 1

Given d, Π is a partially exchangeable random partition if and only if it exists a function f s.t.

P(Πn = {A1, . . . , AK }) = f


n1,1 n1,2

n2,1 n2,2

. . . n1,j . . . n1,J

. . . n2,j . . . n2,J
...

...
. . .

...
. . .

...nk,1 nk,2 . . . nk,j . . . nk,J
...

...
. . .

...
. . .

...nK,1 nK,2 . . . nK,j . . . nK,J


where f is a function satisfying the three following conditions:

(f-i) f :
+∞⋃
n=1

ρ̄∗
n (I1, . . . , IJ ) → [0, 1], (⇒ sufficiency of the matrix of counts)

(f-ii) f (1) = 1 and f (n) =
K+1∑
l=1

f (nlj+), (⇒ close to marginalization)

(f-iii) f ((n1, . . . , nJ )) = f ((α(n1), . . . , α(nJ ))) (⇒ invariance to sets labels)

f is called partially exchangeable partition probability function (pEPPF).
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Characterization theorems

Characterization theorem 2

(P̃1, . . . , P̃J ) is a mSSP if and only if

P̃j
a.s.=
∑
h≥1

πj,hδθh +

(
1 −
∑
h≥1

πj,h

)
P0, for j = 1, . . . , J,

where θh are i.i.d from P0 and independent from π = (πj,h)j,h.

Characterization theorem 3

(P̃1, . . . , P̃J ) is a mSSP if and only if the predictive distribution of X is given by:

X1 ∼ P0 Xn+1 | X1:n ∼

K∑
l=1

pdn+1,l (n) δX∗
l

+ pdn+1,K+1(n) P0 (2)

where
(p-i) pj,l (n) ≥ 0,

(p-ii)
∑K+1

l=1
pj,l (n) = 1, ∀ n and ∀j = 1, . . . J,

(p-iii) pj,l (n)pj′,r (nlj+) = pj′,r (n)pj,l (nrj′+), ∀j, j′ ∈ {1, . . . , J} and ∀l, r ,
(p-iv) pj,l ((n1, . . . , nJ )) = pj,α−1(l)((α(n1), . . . , α(nJ ))).
The collection of functions pj,l is called multivariate prediction probability function (mPPF).
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Characterization theorems

Correlation structure implied by mSSM

Warning: Change of notation for observations for sake of clarity.

Correlation structure implied by a mSSM

If (P̃1, P̃2) ∼ mSSP, then, for any A s.t. 0 < P0(A) < 1, we obtain

corr{P̃1(A), P̃2(A)} =
P(X1,1 = X2,1)√

P(X1,1 = X1,2)
√

P(X2,1 = X2,2)
≥ 0.

Moreover, if the marginal distributions of (P̃1, P̃2) are equal, we get

corr{P̃1(A), P̃2(A)} =
P(X1,1 = X2,1)
P(X1,1 = X1,2)

=
P(“ tie across groups ”)
P(“ tie within a group ”)

Take home messages:
▶ Rather than saying that “ typically ” corr{P̃1(A), P̃2(A)} does not depend on A, now we

know it is true for the whole class of mSSP =⇒ it is a function of probabilities of
sharing atoms regardless of their specific values

▶ corr{P̃1(A), P̃2(A)) ≥ 0 and also

corr(X1,1, X2,1) = P(X1,1 = X2,1) ≥ 0.

▶ The dependence boils down to the sharing of underlying common atoms.
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Characterization theorems

Table: Correlation, tie probabilities and extreme cases.
Process Correlation P(Ties Across) P(Ties Within) Indep. Exchang.

HDP
1 + α

1 + α + α0

1
1 + α0

1 + α + α0
(1 + α) (1 + α0)

α0 → +∞ α → +∞

HPY
(1 + α)(1 − σ0)

(1 − σσ0) + α(1 − σ0) + α0(1 − σ)
1 − σ0
1 + α0

(1 − σσ0) + α(1 − σ0) + α0(1 − σ)
(1 + α) (1 + α0)

α0 → +∞
or σ0 → 1

α → +∞
or σ → 1

HDM
(1 + τ0)(1 + τ M)

(1 + τ M)(1 + τ0 M0) − ττ0(M − 1)(M0 − 1)
1 + τ0

1 + τ0 M0

(1 + τ M)(1 + τ0 M0) − ττ0(M − 1)(M0 − 1)
(1 + τ M)(1 + τ0 M0)

M0 → +∞ M → +∞

HGN
γ0(γ + 1)
(γ + γ0)

2γ0
γ0 + 1

2(γ + γ0)
(γ + 1)(γ0 + 1)

γ0 → 0 γ → 0

HSSP
EPPF(2)

1,0(2)

EPPF(2)
1,1(2)+EPPF(2)

2,1(1,1)EPPF(2)
1,0(2)

⋆

EPPF(2)
1,0(2) EPPF(2)

1,1(2) + EPPF(2)
2,1(1, 1)EPPF(2)

1,0(2) EPPF(2)
1,0(2) = 0 EPPF(2)

1,1(2) = 0

NDP
1

1 + α

1
(1 + α)(1 + β)

1
1 + β

α → +∞ α → 0

NPY
1 − σα

1 + α

(1 − σα)(1 − σβ)
(1 + α)(1 + β)

1 − σβ

1 + β

α → +∞
or σα → 1

(α, σα) →
→ (0, 0)

NDM
1 + τα

1 + ταMα

(1 + τα)(1 + τβ)
(1 + ταMα)(1 + τβMβ)

1 + τβ

1 + τβMβ
Mα → +∞ Mα → 1

NGN
2γα

γα + 1
4γαγβ

(γα + 1)(γβ + 1)
2γβ

γβ + 1
γα → 0 γα → 1

NSSP EPPF(2)
1,0(2) EPPF(2)

1,0(2)EPPF(2)
1,1(2) EPPF(2)

1,1(2) EPPF(2)
1,0(2) = 0 EPPF(2)

1,0(2) = 1

+DP

ϵj ϵk
1 + α0√(

ϵ2
j

1 + α0
+

(1 − ϵj )2

1 + αj

)(
ϵ2

k
1 + α0

+
(1 − ϵk)2

1 + αk

) ϵj ϵk
1 + α0

ϵ2
j

1 + α0
+

(1 − ϵj )2

1 + αj
ϵ = 0 ϵ = 1

+PY

ϵj ϵk (1 − σ0)
1 + α0√(

ϵ2
j (1 − σ0)
1 + α0

+
(1 − ϵj )2 (1 − σj )

1 + αj

)(
ϵ2

k (1 − σ0)
1 + α0

+
(1 − ϵk)2 (1 − σk)

1 + αk

) ϵj ϵk (1 − σ0)
1 + α0

ϵ2
j (1 − σ0)
1 + α0

+
(1 − ϵj )2 (1 − σj )

1 + αj
ϵ = 0 ϵ = 1

+DM

ϵj ϵk(1 + τ0)
1 + τ0 M0√(

ϵ2
j (1 + τ0)

1 + τ0 M0
+

(1 − ϵj )2(1 + τj )
1 + τj Mj

)(
ϵ2

k(1 + τ0)
1 + τ0 M0

+
(1 − ϵk)2(1 + τk)

1 + τk Mk

) ϵj ϵk(1 + τ0)
1 + τ0 M0

ϵ2
j (1 + τ0)

1 + τ0 M0
+

(1 − ϵj )2(1 + τj )
1 + τj Mj

ϵ = 0 ϵ = 1

+GN

ϵj ϵk 2γ0

γ0 + 1√(
ϵ2

j 2γ0

γ0 + 1
+

(1 − ϵj )2 2γj

γj + 1

)(
ϵ2

k 2γ0

γ0 + 1
+

(1 − ϵk)2 2γk
γk + 1

) ϵj ϵk 2γ0

γ0 + 1
ϵ2

j 2γ0

γ0 + 1
+

(1 − ϵj )2 2γj

γj + 1
ϵ = 0 ϵ = 1

+SSP
ϵj ϵkEPPF(2)

1,0(2)√
(ϵ2

j EPPF(2)
1,0(2)+(1−ϵj )2EPPF(2)

1,1(2))(ϵ2
kEPPF(2)

1,0(2)+(1−ϵk )2EPPF(2)
1,1(2))

ϵj ϵkEPPF(2)
1,0(2) ϵ2

j EPPF(2)
1,0(2) + (1 − ϵj )2EPPF(2)

1,1(2) ϵ = 0 ϵ = 1

GM-DP
(1 − z)c

1 + c 3F2(a, 1, 1; b, b; 1)⋆ (1 − z)c
(1 + c)2 3F2(a, 1, 1; b, b; 1)⋆⋆ 1

1 + c
z = 1 z = 0

GM-σ (1 − z)I(c, z)⋆⋆⋆ (1 − z)(1 − σ)I(c, z) 1 − σ

HHDP 1 −
αβ0

(1 + α)(β0 + β + 1)
1

β0 + 1
+

β0
(1 + α)(1 + β)(1 + β0)

1 + β + β0
(1 + β) (1 + β0)

(α, β0) →
→ (+∞, +∞)

α → 0

nCAM 1 −
βα

(2β + 1)(1 + α)
1

1 + α

( 1
1 + β

+
α

2β + 1

) 1
1 + β

None α → 0

⋆ EPPF·
·,1 and EPPF·

·,0 are induced by Lπ,1 = . . . = Lπ,J and Lπ,0, respectively. ⋆⋆
3F2 is the generalized hypergeometric function and a = α(1 − z) + 2, b = α + 2 ⋆⋆⋆ I(c, z) = 1

σ

∫ 1

0
w1/σ−1

[1+z(1−ω1/σ )σ −z(1−ω)] dω
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Characterization theorems

Correlation structure

Questions: Are there models for which:
▷ corr(P̃1(A), P̃2(A)) = 1 if and only if P̃1 = P̃2 a.s. i.e. full exchangeability?

▷ corr(P̃1(A), P̃2(A)) = 0 if and only if P̃1 ⊥⊥ P̃2?

Extreme cases

Under mild conditions which are satisfied by all dependent processes used in Bayesian
statistics:

▷ corr(P̃1(A), P̃2(A)) = 1 if and only if P̃1 = P̃2 a.s.
i.e. full exchangeability;

▷ corr(P̃1(A), P̃2(A)) = 0 if and only if P̃1 ⊥⊥ P̃2.

=⇒ justifies the use of correlation as measure of dependence.
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Characterization theorems

Predictive schemes

If X ∼ mSSM with pEPPF, then a multivariate Chinese restaurant process (mCRP)
(i.e., a sequential sampling scheme that allows sampling from the predictive
distribution) can be derived as

Xj,Ij +1 | (Xj,1:Ij )
J
j=1 =


X∗

l w.p.
pEPPF(n+1)

D (n1,...,[nj,1,...,nj,l +1,...,n1,D ],...,nJ )

pEPPF(n)
D (n1,...,[nj,1,...,nj,l ,...,nj,D ],...,nJ )

X∗
new w.p.

pEPPF(n+1)
D+1 ([n1,0],[nj,1,...,nj,l ,...,nj,D ,1],...,[nJ ,0])

pEPPF(n)
D (n1,...,[nj,1,...,nj,l ,...,nj,D ],...,nJ )

,

where (X∗
1 , . . . , X∗

D) are the unique values in (Xj,1:Ij )J
j=1 recorded in order of arrival by

group, n =
∑

j Ij , and X∗
new is a new species.

Remark: Intractable in general, but exploiting variable augmentations of pEPPF as a
mixture of EPPFs we recover tractable composition of CRP (as CRF for HDP).
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Characterization theorems

Augmented pEPPF

▶ If (P1, . . . , PJ ) is an hierarchical SSP, then

pEPPF(n)
D,aug(n1, . . . , nJ , ℓ, q) = EPPF(ℓ·,·)

D,0 (ℓ·,1, . . . , ℓ·,D)
J∏

j=1

EPPF(Ij )
ℓj,·,j (qj,1, . . . , qj,ℓj,· )

▶ If (P1, . . . , PJ ) is an nested SSP, then

pEPPF(n)
D,aug(n1, . . . , nJ , ℓ, q) = EPPF(J)

R,0(ℓ1, . . . , ℓR)
R∏

r=1

EPPF(I⋆
r )

Dr
(q1,·, . . . , qDr ,)

▶ If (P1, . . . , PJ ) is an additive SSP, then

pEPPF(n)
D,aug(n1, . . . , nJ , ℓ, q) =

J∏
j=1

ϵℓ0
j (1 − ϵj )ℓj

J∏
j=0

EPPF(ℓj )
Dj ,j

(qj,1, . . . , qj,Dj )

▶ . . .

17 / 23



Characterization theorems

rmSSP illustration

▶ We illustrate some rmSSP performance in devising a strategy for sequentially selecting
sampling sites across various locations to maximize the diversity of observed species in a
trees dataset (Battiston, Favaro & Teh, 2018).

▶ Data: species of trees observed in South America recorded from 4 groups, according to
spatial location.

▶ The goal of maximizing the number of species discovered via sequential sampling can be
formulated as a multi-armed bandit problem, where each arm is constituted by a certain
site/population, and a unitary reward is gained when a new species is observed.
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Characterization theorems

Joint work with
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Notation

ρK (I1, . . . , IJ ) = {n : n ∈ NK×J
0 ,

∑K

l=1
nl,j = Ij and

∑J

j=1
nl,j > 0 for l = 1, . . . , K and j =

1, . . . , J}
However, not all matrices in ρK (I1, . . . , IJ ) correspond to a partition (in order of appearance), when
such partition exists we say that n is a compatible matrix of counts accordingly to Dn (or, shortly, n is
Dn-compatible). To clarify why not all the matrices in ρK (I1, . . . , IJ ) correspond to a partition, we
provide the following two examples.
Example Let n = 7, d = {1, 1, 1, 2, 2, 2, 2}} and K=2. The matrix

n =
(

0 3
3 1

)
is not a compatible matrix of counts accordingly to d . The order of appearance requires n1,1 > 0.
Example Let n = 7, Dn = (1, 2, 1, 1, 2, 2, 2) and K=3. The matrix

n =

(
1 0
1 0
1 4

)
is not a compatible matrix of counts accordingly to Dn. The order of appearance requires
n1,2 + n2,2 > 0.
Finally, we denote with

ρ
∗
K (I1, . . . , IJ ) = {n : n ∈ ρK (I1, . . . , IJ ), n is Dn-compatible}

and

ρ̄
∗
n (I1, . . . , IJ ) =

n⋃
K=1

ρ
∗
K (q1, . . . , qJ ).
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