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Introduction



A brief overview on discrete-choice models

Discrete-choice models: A discrete choice model specifies the probability that
a person chooses a particular alternative.

Alternative 0

Alternative 1

Alternative ℓ

Alternative L

...

...

The probability of choosing a specific alternative is expressed as a
function of observed variables that relate to:

• the person
• the alternatives

2



A brief overview on discrete-choice models

Discrete-choice models: A discrete choice model specifies the probability that
a person chooses a particular alternative.

Alternative 0

Alternative 1

Alternative ℓ

Alternative L

...

...

The probability of choosing a specific alternative is expressed as a
function of observed variables that relate to:

• the person
• the alternatives

2



How is the choice made?

• Individual i obtains a utility uiℓ by choosing alternative ℓ, for ℓ = 0, 1, . . . , L.
• The behavior of the person is utility-maximizing: individual i chooses

the alternative that provides the highest utility.

• Only differences in utilities count. We set ui0 = 0 for identifiability.

Alternative 0 → ui0

Alternative 1 → ui1

Alternative ℓ → uiℓ

Alternative L → uiL

...

...

...

...
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How are utilities defined?

Calling ui = (ui1, . . . , uiL)⊺, in the multinomial probit model (MNP) we have

ui = Xi β + εi ,

where

• Xi : L × p matrix which can contain
• intercept terms,
• covariates that vary across agents (e.g., age)
• and/or covariates that vary across alternatives (e.g., prices)

• β: p-dimensional vector of parameters to be estimated.
• εi ∼ NL(0, Σ), where Σ is a covariance matrix satisfying appropriate

constraints for identifiability (e.g., σ11 = 1 or tr(Σ) = L).
• Errors εij , εik , j ̸= k, are not independent.

Calling x⊺
iℓ the ℓ-th row of Xi , we thus have uiℓ = x⊺

iℓβ + εiℓ.
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The likelihood of the MNP

Let us consider Σ fixed (for the moment) and call x⊺
iℓ the ℓ-th row of Xi .

The likelihood of observation yi is

Pr[yi = ℓ | β] = Pr[uiℓ > uik ∀k ̸= ℓ | β]
= Pr[∩k ̸=ℓ{x⊺

iℓβ + εiℓ > x⊺
ikβ + εik} | β]

= Pr[∩k ̸=ℓ{εik − εiℓ < (x⊺
iℓ − xik)⊺β} | β]

= Pr[V[−ℓ]εi < X[i,−ℓ]β | β],

for appropriate matrices V[−ℓ] and X[i,−ℓ], with εi0 = 0 and xi0 = 0⊺
p .

MNP likelihood of a single observation

Thus, the likelihood of the i-th observation in the MNP model is

Pr[yi = ℓ | β] = ΦL(X[i,−ℓ]β; Sℓ), Sℓ = V[−ℓ]ΣV⊺
[−ℓ],

where ΦL(x; Σ) denotes the cdf of a NL(0, Σ) random v., evaluated at x.
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(Bayesian) Inference in the multinomial
probit models



The likelihood of the MNP

MNP likelihood of a sample

The likelihood of a sample y1:n = (y1, . . . , yn) is thus given by

p(y1:n | β) =
n∏

i=1

ΦL(X[i,−yi ]β; Syi ) = ΦnL(Xβ; Λ),

with

X = [X⊺
[1,−y1], . . . , X⊺

[n,−yn ]]
⊺, Λ = block-diag(Sy1 , . . . , Syn )

How can we make inference on β?

We focus on the Bayesian framework, with multivariate Gaussian prior

β ∼ Np(µ, Ω) (usually µ = 0).

Thus
p(β | y1:n) ∝ dNp(β; µ, Ω) · ΦnL(Xβ; Λ).

Is this the kernel of some known family of distributions?
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The unified skew-normal (SUN) distribution: a short recap

Short recap: a SUNp,m (µ, Ω, ∆, γ, Γ) distributed random variable has density

p(β) = dNp(β; µ, Ω)
Φm

(
γ + ∆⊺Ω̄−1ω(β − ξ); Γ − ∆⊺Ω̄−1∆

)
Φm(γ; Γ) ,

where Ω̄ and ω correlation and scale matrices associated to Ω = ωΩ̄ω;
Moments may be quite involved, but we can develop an i.i.d. sampler.

Important fact: SUN additive representation

If β ∼ SUNp,m, then it can be characterized probabilistically as a linear
combination of:

• a p-variate Gaussian term;
• an m-variate truncated Gaussian component.

In the MNP, we have p(β | y1:n) ∝ dNp(β; µ, Ω) · ΦnL(Xβ; Λ)
=⇒ p(β | y1:n) is the kernel of a SUNp,nL (F., Durante, JMLR, 2022).
=⇒ we get an i.i.d. sampler for p(β | y1:n) well-suited for high-dimensional

scenarios, but it becomes infeasible as nL gets larger.
=⇒ Variational Bayes can help to overcome this issues.
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The dynamic multinomial probit model



The dynamic multinomial probit model

What can we say about dynamic versions of the MNP model that account for
time-dependent observations?

Dynamic multinomial probit model:

β0 β1 . . . βt . . . βT−1 βT

Y1 Yt YT−1 YT

Yt = (yt,1, . . . , yt,nt ) represents the nt categorical observations sampled at time t.

yt,i | βt
ind∼ MNP(βt ; Xt,i ), i = 1, . . . , nt (observed)

βt = Gtβt−1 + ηt (latent)

with β0 ∼ Np (a0, P0) independent of ηt
iid∼ Np (0, W).
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The filtering distribution of the dynamic multinomial probit

Methodological question:
Can we develop online procedures for the filtering distribution p(βt | Y1:t)?

Rimella, F. and Rebaudo (2025+)

Calling Nt =
∑t

s=1 ns the total number of observations up to time t,
under the dynamic probit model:

1. the filtering distribution p(βt | Y1:t) is SUNp,Nt L;
2. the state predictive distribution p(βt+1 | Y1:t) is SUNp,Nt L;

I.i.d. sampling in principle feasible thanks to the SUN additive representation.
Need to linearly combine:

• a sample from a p-variate Gaussian;
• a sample from a NtL-variate truncated Gaussian.

The truncated multivariate component is the computationally-impractical part.

Can we get a procedure that scales linearly in t?
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Computational methods



Option 1: Particle filters

Basic idea: at each time t, obtain a sample from the target distribution
p(β1:t | Y1:t), exploiting the samples obtained at previous iterations t−1.

The performance of particle filters relies on the proposal π(βt|t | β
(r)
1:t−1|1:t−1, Y1:t)

and the form of the resampling weights w (r)
t = wt(β̄(r)

1:t|t), r = 1, . . . , R.

In the simplest case (bootstrap particle filter):

• π(βt | β1:t−1, Y1:t) = p(βt | βt−1)
• w (r)

t ∝ p(Yt | β̄
(r)
t ) = ΦL(X[yt,1]β̄

(r)
t|t ; Syt,1 ) · · · ΦL(X[yt,nt ]β̄

(r)
t|t ; Syt,nt )

At each step t, we would need to compute R × nt L-dimensional Gaussian cdfs.

=⇒ computationally demanding.

Other choices for the proposal would be possible (optimal proposal as in
Doucet et al., 2000), but the weigths would still have the same problem.
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Option 2: Assumed density filtering (ADF)

Basic idea: use sequential simple SUN approximations ht(βt) of the
filtering distribution p(βt | Y1:t), by sequentially approximating the
filtering distribution of the previous time with a Gaussian density.
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Option 2: Assumed density filtering (ADF)

β0

β0 β1 β2 . . . βt−1 βt

Y1 Y2 Yt−1 Yt

At time t = 0: p(β0) = dNp(β0; a0, P0).
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q1(β2) = dNp(β2; Gµ1|1, GΩ1|1G⊺ + W) ≈ p(β2 | Y1).

Plugging this in p(β2 | Y1:2) ∝ p(β2 | Y1)p(Y2 | β2), we get the approximation

p(β2 | Y1:2) ≈ h2(β2) ∝ q1(β2)p(Y2 | β2) = dSUNp,n2L.
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Wrap up of methods

Computational bottlenecks of the various methods seen so far:

• i.i.d. sampler: sampling from Nt × L-variate truncated Gaussian, Nt =
∑t

s=1 ns ;

• particle filter: computation of R × nt cdfs of L-variate Gaussians at each time;

• assumed density filtering (ADF): sampling from an nt × L-variate truncated
Gaussian at each time t (arising from the SUNp,nt ×L approximated filtering
distribution of time t).

Can we get something more efficient? Can we use the spirit of ADF but avoid
the nt × L-variate truncated Gaussian?
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Option 3: (Sequential) Expectation Propagation

Basic idea: see the filtering distribution

p(βt | Y1:t) ∝ p(βt | Y1:t−1)
nt∏

i=1

p(yt,i | βt)

as the posterior distribution in a model where
• p(βt | Y1:t−1) is the prior,
• p(yt,i | βt) is the likelihood of observation yi,t , i = 1, . . . , nt .

Approximate this posterior via expectation propagation (EP) with a
Gaussian approximation qt(βt) = dNp(βt ; µt|t , Ωt|t).
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Option 3: (Sequential) Expectation Propagation

In EP, we approximate p(βt | Y1:t) ∝ p(βt | Y1:t−1)
∏nt

i=1 p(yt,i | βt) with

qt(βt) ∝ qt−1(βt)
nt∏

i=1

qt,i (βt), where

• qt−1(βt) = dNp(βt ; Gµt−1|t−1, GΩt−1|t−1G⊺ + W) ≈ p(βt | Y1:t−1),

• qt,i (βt) ∝ exp{− 1
2 β⊺

t Qt,i βt + β⊺
t rt,i } ≈ p(yt,i | βt) for i = 1, . . . , nt .

Since we have Gaussian prior and Gaussian likelihood

qt(βt) = dNp(βt ; µt|t , Ωt|t),

where µt|t and Ωt|t are determined by rt,i and Qt,i , i = 1, . . . , nt .

The quantities rt,i and Qt,i , i = 1, . . . , nt are fixed in an “optimal” way
via EP moment matching conditions, available in closed form.

15



Option 3: (Sequential) Expectation Propagation

In EP, we approximate p(βt | Y1:t) ∝ p(βt | Y1:t−1)
∏nt

i=1 p(yt,i | βt) with

qt(βt) ∝ qt−1(βt)
nt∏

i=1

qt,i (βt), where

• qt−1(βt) = dNp(βt ; Gµt−1|t−1, GΩt−1|t−1G⊺ + W) ≈ p(βt | Y1:t−1),

• qt,i (βt) ∝ exp{− 1
2 β⊺

t Qt,i βt + β⊺
t rt,i } ≈ p(yt,i | βt) for i = 1, . . . , nt .

Since we have Gaussian prior and Gaussian likelihood

qt(βt) = dNp(βt ; µt|t , Ωt|t),

where µt|t and Ωt|t are determined by rt,i and Qt,i , i = 1, . . . , nt .

The quantities rt,i and Qt,i , i = 1, . . . , nt are fixed in an “optimal” way
via EP moment matching conditions, available in closed form.

15



Marginal likelihood via EP

EP can also be used to get an approximation of the marginal likelihood

p(Y1:T ) = p(Y1)p(Y2 | Y1)p(Y3 | Y1:2) · · · p(YT | Y1:T−1)

since at each time it can give an approximation of p(Yt | Y1:t−1).

Expectation-maximization (EM) can be used to estimate the desired
hyper-parameters (e.g., Σ) by maximizing the marginal likelihood.
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Experiments and results



EM experiments

We checked the ability of the proposed EM procedure to maximize the
log-marginal likelihood and obtain meaningful estimates for Σ.

We ran the following experiment generating synthetic data as follows:

• we took L = 3 and T = 10,
• 15 individuals on average at each time step,
• 2 individual-specific covariates + 3 choice-specific covariates

(+ choice-specific intercepts).

• Keeping the above covariates fixed, we generated 50 datasets from the
model:

• each time generating a different trajectory of the parameters β0:T ,
• then, given the generated β0:T , we generated observations Y1:T .

Is the EM effective on average in the estimation of Σ?
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EM experiments
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EM experiments
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Filter experiments

We then compared the performance of the algorithms in a setting where:

• T = 20,
• nt ∼ Pois(10) for each t,
• L = 3,
• there are 2 individual-specific characteristics,
• there are 3 choice-specific characteristics.

That is,

ut,i,ℓ = αt,0,ℓ + ξ⊺
t,i αt,ℓ + ζ⊺

t,i,ℓγt + εt,i,ℓ, ℓ = 1, . . . , 3,

where ξt,i has dimension 2 and ζt,i,ℓ has dimension 3.

The vector of parameters is then

βt = (αt,0,1, αt,0,2, αt,0,3, α⊺
t,1, α⊺

t,2, α⊺
t,3, γ⊺

t )⊺ ∈ R12.
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Filter experiments: running times

Method i.i.d. ADF EP SMC
Time (in seconds) 66,766.10 7.05 17.23 528.60

Table 1: Running times based on 5,000 samples.
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Filter experiments: intercepts parameters
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Filter experiments: individual-specific characteristics parameters
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Filter experiments: choice-specific characteristics parameters
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Filter experiments: higher dimension

If we increase the dimension of the problem, taking

• T = 50,
• nt ∼ Pois(50) for each t,
• the rest as before:

• L = 3,
• 2 individual-specific characteristics,
• 3 choice-specific characteristics.

we obtain the following running times

Method i.i.d. ADF EP SMC
Time (in seconds) NA 599.98 199.69 6323.35

Table 2: Running times based on 5,000 samples.
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Filter experiments: intercepts parameters
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Filter experiments: individual-specific characteristics parameters
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Filter experiments: choice-specific characteristics parameters
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Conclusions

• We have considered multiple filtering methods to make inference in
dynamic discrete-choice models based on multinomial probit likelihoods.

• The i.i.d. sampler seems impractical already in moderate dimensions.
• Sequential Monte Carlo (SMC) procedures do not seem an appropriate

solution due to the need to compute the MNP likelihood multiple times.
• The assumed density filtering (ADF) procedure is efficient in scenarios

where nt × L never exceeds a few hundred.
• In higher dimensions, sequential expectation propagation (EP) is the

most efficient method, with accuracy comparable to the one of ADF.
• An expectation-maximization (EM) can be used to estimate the

hyperparameters, like, e.g., the covariance matrix of the error terms Σ.
• Ongoing work on an Expedia dataset about bookings of properties across

time: arxiv preprint coming in the coming months!

Thank You!
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