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Introduction



A brief overview on discrete-choice models

Discrete-choice models: A discrete choice model specifies the probability that
a person chooses a particular alternative.
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A brief overview on discrete-choice models

Discrete-choice models: A discrete choice model specifies the probability that
a person chooses a particular alternative.
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The probability of choosing a specific alternative is expressed as a
function of observed variables that relate to:

= the person

= the alternatives




How is the choice made?

= |Individual i obtains a utility ujs by choosing alternative ¢, for £ =0,1,..., L.

= The behavior of the person is utility-maximizing: individual i chooses
the alternative that provides the highest utility.
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How is the choice made?

= |Individual i obtains a utility ujs by choosing alternative ¢, for £ =0,1,..., L.

= The behavior of the person is utility-maximizing: individual i chooses
the alternative that provides the highest utility.

= Only differences in utilities count. We set ujp = 0 for identifiability.

Alternative 0 —  upo =0

Alternative 1  — i

T Alternative ¢ — uip

Alternative L —  up



How are utilities defined?

Calling u; = (ui1, ..., ui)T, in the multinomial probit model (MNP) we have
u; = X,ﬂ + €i,

where

= X;: L x p matrix which can contain

= intercept terms,
= covariates that vary across agents (e.g., age)
= and/or covariates that vary across alternatives (e.g., prices)

= [3: p-dimensional vector of parameters to be estimated.

= g; ~ N (0,X), where X is a covariance matrix satisfying appropriate
constraints for identifiability (e.g., c11 = 1 or tr(X) = L).

= Errors ¢, ci, j # k, are not independent.

[ Calling x], the ¢-th row of X;, we thus have vy = x],8 + €jq. ]




The likelihood of the MNP

Let us consider 3 fixed (for the moment) and call x], the ¢-th row of X;.
The likelihood of observation y; is
Prlyi = €| B] = Prluic > ui Yk # £ | B]
= Pr{Nize{x],B + €ie > x|, B +cix} | Bl
= Pr{Nize{en — ie < (x}, —xi) B} | Bl
= Pr[V_gei < Xjj,—gB | B],

for appropriate matrices V|_; and X[; _, with €j0 = 0 and x;o = 0F.



The likelihood of the MNP

Let us consider 3 fixed (for the moment) and call x], the ¢-th row of X;.
The likelihood of observation y; is
Prlyi = €| B] = Prluic > ui Yk # £ | B]
= Pr{Nize{x],B + €ie > x|, B +cix} | Bl
= Pr{Nize{en — ie < (x}, —xi) B} | Bl
= Pr[V_gei < Xjj,—gB | B],

for appropriate matrices V|_; and X[; _, with €j0 = 0 and x;o = 0F.

MNP likelihood of a single observation

Thus, the likelihood of the i-th observation in the MNP model is
Pr[yi = Z | B] = ¢'L(X[i,—l]5;sé)7 S( = V[—Z]EVE—E]’

where ®;(x; X) denotes the cdf of a N;(0,X) random v., evaluated at x.




(Bayesian) Inference in the multinomial
probit models



The likelihood of the MNP

MNP likelihood of a sample

The likelihood of a sample y1., = (y1, ..., ¥n) is thus given by

Plyin | B) = [ [ @(Xi.—1B: Sy) = ®ai(XB: A),

i=1

with

X=[XI _ .....XI_ ", A=block-diag(Sy,,...,Sy,)
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We focus on the Bayesian framework, with multivariate Gaussian prior

B~ Np(p, ) (usually p =0).

Thus
P(B | yi:n) o< dNp(B; pt, ) - ®nr(XB; A).



The likelihood of the MNP

MNP likelihood of a sample

The likelihood of a sample y1., = (y1, ..., ¥n) is thus given by

Plyin | B) = [ [ @(Xi.—1B: Sy) = ®ai(XB: A),

i=1
with
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How can we make inference on 87

We focus on the Bayesian framework, with multivariate Gaussian prior
B~ No(p, ) (usually p = 0).

Thus
P(B | yi:n) o< dNp(B; pt, ) - ®nr(XB; A).

Is this the kernel of some known family of distributions? 6



The unified skew-normal (SUN) distribution: a short recap

Short recap: a SUN, (i, Q, A, ~,T) distributed random variable has density

(v+ATQ Tw(B-¢)T - ATQA)

¢m

where € and w correlation and scale matrices associated to Q2 = wQw;
Moments may be quite involved, but we can develop an i.i.d. sampler.

Important fact: SUN additive representation

If 8 ~ SUN,, m, then it can be characterized probabilistically as a linear
combination of:

= a p-variate Gaussian term;

= an m-variate truncated Gaussian component.
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The unified skew-normal (SUN) distribution: a short recap

Short recap: a SUN, (i, Q, A, ~,T) distributed random variable has density

(v+ATQ Tw(B-¢)T - ATQA)

¢m

where € and w correlation and scale matrices associated to Q2 = wQw;
Moments may be quite involved, but we can develop an i.i.d. sampler.

Important fact: SUN additive representation

If 8 ~ SUN,, m, then it can be characterized probabilistically as a linear
combination of:

= a p-variate Gaussian term;

= an m-variate truncated Gaussian component.

In the MNP, we have p(8 | y1.n) o< dNL(B; 1, Q) - o (XB; A)

= p(B | y1.n) is the kernel of a SUN, . (F., Durante, JMLR, 2022).

= we get an i.i.d. sampler for p(3 | yi.n) well-suited for high-dimensional
scenarios, but it becomes infeasible as nL gets larger.

— Variational Bayes can help to overcome this issues.
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The dynamic multinomial probit model

What can we say about dynamic versions of the MNP model that account for
time-dependent observations?

Dynamic multinomial probit model:

Y: = (ye1,---,Yen ) represents the n, categorical observations sampled at time t.
Yei | Be = MNP(Be; Xei), i=1,...,n (observed)
B = Gt,Bt—l + M (Iatent)

with Bo ~ N, (a0, Po) independent of 7, o N, (0,W).
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Methodological question:

Can we develop online procedures for the filtering distribution p(8: | Y1.¢)?
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The filtering distribution of the dynamic multinomial probit

Methodological question:

Can we develop online procedures for the filtering distribution p(8: | Y1.¢)?

Rimella, F. and Rebaudo (2025+)

Calling N; = Z:Zl ns the total number of observations up to time t,

under the dynamic probit model:
1. the filtering distribution p(B: | Y1.t) is SUNp n,1;
2. the state predictive distribution p(B:y1 | Y1:t) is SUNp n,1;

l.i.d. sampling in principle feasible thanks to the SUN additive representation.

Need to linearly combine:

= a sample from a p-variate Gaussian;
= a sample from a N;L-variate truncated Gaussian.

The truncated multivariate component is the computationally-impractical part.

Can we get a procedure that scales linearly in t?



Computational methods



Option 1: Particle filters

Basic idea: at each time t, obtain a sample from the target distribution

p(B1:t | Y1:t), exploiting the samples obtained at previous iterations t—1.
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Option 1: Particle filters

Basic idea: at each time t, obtain a sample from the target distribution
p(B1:t | Y1:t), exploiting the samples obtained at previous iterations t—1.

The performance of particle filters relies on the proposal 7(3;/; | ﬂgft)—l\l:t—NYl:t)

and the form of the resampling weights w” = wt(ﬂ_yz‘t), r=1,...,R.

In the simplest case (bootstrap particle filter):

O W(Bt | ,81:1‘717Y1:t) = P(ﬁt ‘ Btfl)

- thr) X p(Yf | Bgf)) = q)L(X[yr,l]Bg\?; sYr,l) e ¢L(X[Yr,nt]5§|r3; s}/t.nr)
At each step t, we would need to compute R X n; L-dimensional Gaussian cdfs.
—> computationally demanding.

Other choices for the proposal would be possible (optimal proposal as in
Doucet et al., 2000), but the weigths would still have the same problem.
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Option 2: Assumed density filtering (ADF)

Basic idea: use sequential simple SUN approximations h¢(3;) of the
filtering distribution p(3: | Y1), by sequentially approximating the
filtering distribution of the previous time with a Gaussian density.

11
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At time t = 0: p(ﬁo) = d,“\“"p(ﬁo; ao, Po).
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Option 2: Assumed density filtering (ADF)

At time t = 0: p(Bo) = dN,(Bo; ao, Po).
This gives a prior distribution for Si:
At time t = 1: p(,ﬁ1 Y1) X q)nlL(X[Y‘]JI;A[Y‘]) = dSL‘Xp_,,lL
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Option 2: Assumed density filtering (ADF)

At time t = O: p(ﬁo) = d,“\“"p(ﬁo; ao, Po).
This gives a prior distribution for Si:
At time t = 1: p(‘i"% Y])O( CD,HL(X[Y‘]JHA[Y‘]):dSUA\'p_mL

Idea: Approximate now p(/3; | Y1) with a Gaussian density g:(/31)
and repeat the process at next time.

12



Option 2: Assumed density filtering (ADF)

Approximate p(S31 | Y1) with g1(81) = dN,(B1; p1)1, 1)1) matching the first
two moments.

At time t = 2:
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Option 2: Assumed density filtering (ADF)

Approximate p(31 | Y1) with g1(81) = dN,(B1; 1)1, 1)1) matching the first
two moments.

At time t = 2:

This induces a Gaussian predictive distribution for G2:
~ p(B2 | Y1).

Plugging this in p(B2 | Y12) < p(B2 | Y1)p(Y2 | B2), we get the approximation

p(ﬂz ‘ Y1;2) ~ hg(ﬂg) X p(Yg ‘ ﬁg) = dSl‘A\'/J_,,:L.
12
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Option 2: Assumed density filtering (ADF)
B—=()—=() > ) @

From previous time t — 1, we have the SUN filtering approximation h:—1(3: 1).

At generic time t:

Then, take the Gaussian approximation g:—1(8:) ~ p(B¢—1 | Y1.t—1), matching
the first two moments of h.1(B: 1).

This induces a Gaussian predictive distribution for 3;:

Plugging this in p(B: | Y1:t) < p(Be | Yie—1)p(Y: | B:), we get

P(Be | Yue) = he(Br) ox p(Y. | Be) ;



Option 2: Assumed density filtering (ADF)
OF 0N OSEENES

From previous time t — 1, we have the SUN filtering approximation h:—1(3: 1).

At generic time t:

Then, take the Gaussian approximation g:—1(8:) ~ p(B¢—1 | Y1.t—1), matching
the first two moments of h.1(B: 1).

This induces a Gaussian predictive distribution for 3;:

Plugging this in p(B: | Y1:t) < p(Be | Yie—1)p(Y: | B:), we get

p(ﬂt I Yl:t) ~ hr(/’r) X P(Yr ‘ ‘i/}r) = dSlvxp‘an
12



Wrap up of methods

Computational bottlenecks of the various methods seen so far:

t

s=11s)

= i.i.d. sampler: sampling from N; x L-variate truncated Gaussian, N; = Z
= particle filter: computation of R X n; cdfs of L-variate Gaussians at each time;
= assumed density filtering (ADF): sampling from an n; x L-variate truncated

Gaussian at each time t (arising from the SUN,, ,, 1 approximated filtering
distribution of time t).
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Wrap up of methods

Computational bottlenecks of the various methods seen so far:

t

s=11s)

= i.i.d. sampler: sampling from N; x L-variate truncated Gaussian, N; = Z
= particle filter: computation of R X n; cdfs of L-variate Gaussians at each time;
= assumed density filtering (ADF): sampling from an n; x L-variate truncated

Gaussian at each time t (arising from the SUN,, ,, 1 approximated filtering

distribution of time t).

Can we get something more efficient? Can we use the spirit of ADF but avoid

the n; x L-variate truncated Gaussian?
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Option 3: (Sequential) Expectation Propagation

Basic idea: see the filtering distribution
p(Be | Y1) o H
i=1

as the posterior distribution in a model where
= p(B¢ | Y1:t—1) is the prior,
» p(ye,i | Be) is the likelihood of observation yi, i =1,...,n;.

Approximate this posterior via expectation propagation (EP) with a
Gaussian approximation q:(8:) = d/N,(B:; pee, Qee).

14



Option 3: (Sequential) Expectation Propagation

In EP, we approximate p(3: | Y1i.t) o< Hf;l with
q:(Bt) o< H . where
i=1
C = dNp(Bt; Gpre—1)t—1,GRe_1:—1GT + W) = 2
. o<exp{—% 1QeiBe + Blrei} = fori=1,...,n;.

Since we have Gaussian prior and Gaussian likelihood

qt(ﬁt) = d/\/p(ﬂt; Mt\tvnt|t)7

where M|t and Qt‘t are determined by r;; and Q¢ ;, i =1,...,n.
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Option 3: (Sequential) Expectation Propagation

In EP, we approximate p(f3: | Yi.t) o H:’;l with
q:(Bt) o< H . where
i=1
= = dNp(Bt; Gpre—1)t—1,GRe_1:—1GT + W) = .
. o<exp{—% 1QeiBe + Blrei} = fori=1,...,n;.

Since we have Gaussian prior and Gaussian likelihood

qe(Be) = dNL(Be; prejes Qepe)s

where M|t and Qt‘t are determined by r;; and Q¢ ;, i =1,...,n.

The quantities r:; and Q. ;, i = 1,..., n; are fixed in an “optimal” way
via EP moment matching conditions, available in closed form.

15



Marginal likelihood via EP

EP can also be used to get an approximation of the marginal likelihood
p(Yrr) = p(Y1)p(Y2 | Y1)p(Y3 | Yi2) - p(Y7 | YiT-1)
since at each time it can give an approximation of p(Y: | Y1.¢—1).

Expectation-maximization (EM) can be used to estimate the desired
hyper-parameters (e.g., X) by maximizing the marginal likelihood.

16



Experiments and results




EM experiments

We checked the ability of the proposed EM procedure to maximize the
log-marginal likelihood and obtain meaningful estimates for X.

We ran the following experiment generating synthetic data as follows:
= we took L =3 and T =10,

= 15 individuals on average at each time step,

= 2 individual-specific covariates + 3 choice-specific covariates
(+ choice-specific intercepts).

17



EM experiments

We checked the ability of the proposed EM procedure to maximize the
log-marginal likelihood and obtain meaningful estimates for X.

We ran the following experiment generating synthetic data as follows:

= we took L =3 and T =10,

= 15 individuals on average at each time step,

= 2 individual-specific covariates + 3 choice-specific covariates
(+ choice-specific intercepts).

= Keeping the above covariates fixed, we generated 50 datasets from the
model:

= each time generating a different trajectory of the parameters 8.7,
= then, given the generated (y.7, we generated observations Yi.7.

Is the EM effective on average in the estimation of 37

17



EM experiments
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EM experiments
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Filter experiments

We then compared the performance of the algorithms in a setting where:

= T =20,
= n¢ ~ Pois(10) for each t,
= [ =3,

= there are 2 individual-specific characteristics,

= there are 3 choice-specific characteristics.
That is,
Uie = 00,0 + &5 e + €1 v +enie, £=1,...,3,

where &; i has dimension 2 and (:,; ¢ has dimension 3.

The vector of parameters is then

— T T T T\T 12
Be = (@t,0,1, @t,0,2, 1,03, Q1 O oy Oy 3, Ve )T €R™.

20



Filter experiments: running times

Method | iid. ADF EP  SMC
Time (in seconds) ‘ 66,766.10 7.05 17.23 528.60

Table 1: Running times based on 5,000 samples.
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Filter experiments: intercepts parameters
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Filter experiments: individual-specific characteristics parameters

Parameters for individual-specific characteristics
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Filter experiments: choice-specific characteristics parameters

Beta_t
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Filter experiments: higher dimension

If we increase the dimension of the problem, taking

= T =50,
= n; ~ Pois(50) for each t,
= the rest as before:

= [ =3,

= 2 individual-specific characteristics,
= 3 choice-specific characteristics.

we obtain the following running times

Method \i.i.d. ADF EP SMC
Time (in seconds) | NA  599.98 199.69 6323.35

Table 2: Running times based on 5,000 samples.

25



Filter experiments: intercepts parameters

Intercept parameters
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Filter experiments: individual-specific characteristics parameters

Parameters for individual-specific characteristics
ADF EP sMC
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Filter experiments: choice-specific characteristics parameters

Parameters for choice-specific characteristics
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Conclusions

= We have considered multiple filtering methods to make inference in
dynamic discrete-choice models based on multinomial probit likelihoods.

= The i.i.d. sampler seems impractical already in moderate dimensions.

= Sequential Monte Carlo (SMC) procedures do not seem an appropriate
solution due to the need to compute the MNP likelihood multiple times.

= The assumed density filtering (ADF) procedure is efficient in scenarios
where n; X L never exceeds a few hundred.

= In higher dimensions, sequential expectation propagation (EP) is the
most efficient method, with accuracy comparable to the one of ADF.

= An expectation-maximization (EM) can be used to estimate the
hyperparameters, like, e.g., the covariance matrix of the error terms X.

= Ongoing work on an Expedia dataset about bookings of properties across
time: arxiv preprint coming in the coming months!

Thank Youl!
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