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MALDI imaging

 Matrix-Assisted Laser Desorption/lonisation (MALDI) - MSI tool extracts the
distribution of molecules (such as lipids) in different locations of a biological sample

* |t allows the detection of critical biological traits that would be overlooked with a
simple visual morphological assessment

» A slide of a biological sample is
divided into a grid of pixels of 50
microns each

* For each pixel, the instrument
acguires a mass spectrum, a
collection of molecular
abundances measured at different
values of the mass-to-charge
index m/z (also known as signal)
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Image from “MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice”,
Aichler and Walch, Laboratory Investigation - volume 95, pages 422-431 (2015)



The motivating datasets

e |t is obtained from a slice of the brain
of a healthy mouse, to be used as a
benchmark

* The atlas of the mouse brain is well
known - this way, biologists can
validate their preprocessing pipelines

e | will use this dataset as a tool to build
the model



MALDI-MSI procedure

 We want to develop new statistical methods that take into account the
information of these complex data
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MALDI-MSI procedure

 We want to develop new statistical methods that take into account the

information of these complex data

The tissue is covered by a specific substance called
matrix, which separates a specific molecule (here,
lipids) from the rest and makes it “ready to be detected”

A laser hits the tissue in a specific spot, and a mass
spectrum is extracted (measuring signal abundance)

Thus, the data can be organized into a large matrix. We
have information for approximately more than 1500
pixels (i.e., different locations)

Each pixel contains the abundance for approximately 80
signals (i.e., different lipids)

Thus, data can be organized in a large matrix



Visual summary

- The MALDI-MSI technique extracts
the distributions of the abundance
for different lipid signals (rows) in
many locations (pixels, columns)
given a biological sample

R

Molecular signals (m/z)
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Visual summary

» For each lipid signal, we recover its
expressions all over the brain slice

» There Is spatial information to take
iInto account!
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Subset of the dataset

Visual summary - : :

- Within each pixel, we observe a R
distribution of abundances s
+ Recall that the dataset contains
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CI u St e r Xaa7 L L LB ] II IEEEEEEEEEE NN EEE =llllllll

NC')?LO@NCDO)%
LOOLOLOOOOLOLO

Transformed H
Abundances _4 _3_2_1 0
Pixel: 510 Pixel: 538 Pixel: 589
20 -
Py
‘B
(e
()
©
10 -
0 i [ _|'I i i O 1Tl i i O |_ ﬂ Om i
S 9 2 o S S 9 2 o S S 9 2 o S
Transformed abundance



Subset of the dataset
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Biclustering algorithms

» We look for “two-dimensional” clustering

 Biclustering of the data: simultaneously group the pixels (columns) and, within
each column cluster, group the different values of the signals (rows)

» The problem reminds us (or only

heatmap() R function output on the subset dataset - simultaneous clustering of columns and rows

me?) of the framework of clustering Subset of he catase

H |
[T TP PT ]

grouped data, for which lively

literature has recently flourished (see

for example, Beraha et al. (2021), Balocchi et al. (2023),
Camerlenghi et al. (2019), D’Angelo et al. (2023), Denti et al.

(2023), Rebaudo et al. (2023), Rodriguez et al. (2011),...)

» All these models assume a partially
exchangeable framework




Partial exchangeability

- Partially exchangeable data: the observations are exchangeable within groups
and conditionally independent across groups

* For partially exchangeable data, a matrix structure is not needed, as the
framework disregards the identities of the rows

Partial Exchangeability
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Partial exchangeability

- Partially exchangeable data: the observations are exchangeable within groups
and conditionally independent across groups

* For partially exchangeable data, a matrix structure is not needed, as the
framework disregards the identities of the rows

» |t's not ideal for this application, as we want to take the meaning of the rows
(lipid signals) into account!

Partial Exchangeability
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Separate exchangeability

» There are cases in which one may want to draw inference about the rows’
characteristics: we use separate exchangeability (Rebaudo et al., 2021)

» Separate exchangeability is an ideal framework for modeling matrices where
rows and columns have specific meanings: once the columns are clustered
together, the model does not disregard any potential information conveyed by
the rows

Statistics > Methodology

[Submitted on 14 Dec 2021 (v1), last revised 20 Jun 2024 (this version, v2)]

Separate Exchangeability as Modeling Principle in Bayesian Nonparametrics

Giovanni Rebaudo, Qiaohui Lin, Peter Mueller

Partial Exchangeability Separate Exchangeability




Separate Exchangeability through Nested Partitions

- Let Y indicate the MALDI-MSI abundance matrix, characterized by /N rows (signals) and J columns (pixels)

. We need column-specific membership labels, denoted with C = (Cl, e, CJ), where C} e{l,...,K} for
j=1,...,J. We will refer to the values in C as distributional cluster (DC) labels.

J
p(C | ) = H

Statistics > Methodology
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Separate Exchangeability through Nested Partitions

- Let Y indicate the MALDI-MSI abundance matrix, characterized by /N rows (signals) and J columns (pixels)

. We need column-specific membership labels, denoted with C = (Cl, e, CJ), where C} e{l,...,K} for
j=1,...,J. We will refer to the values in C as distributional cluster (DC) labels

J
p(c ‘ 71') — Hﬂ-cj

7=1

» We consider a set of membership labels for the rows within every possible column cluster, defining
R, = (Rl,k, ...,RN’k), withR;, € {1,...,L}foralli=1,...,Nandk = 1,..., K.

N K
p(R|w)=][]]wr.x

Statistics > Methodology
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Separate Exchangeability through Nested Partitions

- Let Y indicate the MALDI-MSI abundance matrix, characterized by /N rows (signals) and J columns (pixels)

. We need column-specific membership labels, denoted with C = (Cl, e, CJ), where C} e{l,...,K} for
j=1,...,J. We will refer to the values in C as distributional cluster (DC) labels.

J
p(C|m) =]] e,

7=1

» We consider a set of membership labels for the rows within every possible column cluster, defining
R, = (ngk, ...,RN’k), withR;, € {1,...,L}foralli=1,...,Nandk = 1,..., K.

N K
p(R|w)=]]]]wriwn

» Finally, the data distribution is

N J
p(Y ‘ R, C, 6) — H H f(y?,] ‘ HRi,Cj) Statistics > Methodology

[Submitted on 14 Dec 2021 (v1), last revised 20 Jun 2024 (this version, v2)]
1=1 =1 Separate Exchangeability as Modeling Principle in Bayesian Nonparametrics

Giovanni Rebaudo, Qiaohui Lin, Peter Mueller




Separate Exchangeability through Nested Partitions

- Let Y indicate the MALDI-MSI abundance matrix, characterized by /N rows (signals) and J columns (pixels)

. We need column-specific membership labels, denoted with C = (Cl, e, CJ), where C} e{l,...,K} for
j=1,...,J. We will refer to the values in C as distributional cluster (DC) labels.

J
p(C|m) =]] e,

j=1

» We consider a set of membership labels for the rows within every possible column cluster, defining
R, = (Rl,k, ...,RN’k), withR;, € {1,...,L}foralli=1,...,Nandk = 1,..., K.

(R\w HHwR’Lk’k

1=1 k=1 The column cluster is the second index of the row cluster! The row cluster
—» IS shared across all the elements of the column cluster!
o
Flna”y’ the data dlStrlbUthn IS —» Reminiscent of the biclustering model by Lee et al. (2013)
>
N J // Presence of Common Atoms, as in Denti et al. (2023) and Chandra et al. (2023)
(Y ‘ R C 0) — ( o ‘ 0 Statistics > Methodology
p ) 7 H H f yz‘y Rz ’ C,] ) [Submitted on 14 Dec 2021 (v1), last revised 20 _Jun 2024 (this version, v2)]
1=1 =1 Separate Exchangeability as Modeling Principle in Bayesian Nonparametrics
Giovanni Rebaudo, Qiaohui Lin, Peter Mueller




Including spatial information in the model

* Include in the model the spatial correlation that may incur across pixels

» To do so, we use hidden Markov random fields (Besag, 1986) to specify a
clustering distribution over the columns

» In particular, we use a Potts model with K potential clusters

p(CJ:k\C_J)ocexp |:ﬁ Z ]l{cqu}:| , kzl,,K
a~N;

- [} is the inverse temperature parameter (crucial, but hard
to estimate!) and A/ ; denotes the neighborhood of pixel ]

» The larger the inverse temperature, the higher the
probability of a column to be in the same cluster of its
neighbors

23



Including spatial information in the model

* Include in the model the spatial correlation that may incur across pixels

» To do so, we use hidden Markov random fields (Besag, 1986) to specify a
clustering distribution over the columns

» |In particular, we use a Potts model with K potential clusters
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Including spatial information in the model

* Include in the model the spatial correlation that may incur across pixels

» To do so, we use hidden Markov random fields (Besag, 1986) to specify a
clustering distribution over the columns

» |In particular, we use a Potts model with K potential clusters

p(Cj=k|C_j)O<eXp [,3 Z ]l{ch}] ; k=1,...,K
a~N;

- [} is the inverse temperature parameter (crucial, but hard
to estimate!) and A/ ; denotes the neighborhood of pixel ]

» The larger the inverse temperature, the higher the
probability of a column to be in the same cluster of its
neighbors

25
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Yes, there are more green pixels here, sorry


https://medium.com/@takashifurukawa1122

Including spatial information in the model

* Include in the model the spatial correlation that may incur across pixels

» To do so, we use hidden Markov random fields (Besag, 1986) to specify a

clustering distribution over the columns
Prob of green  exp [5,8]

» |In particular, we use a Potts model with K potential clusters Prob of blue o exp |/]

Prob of yellow « exp |2/

p(Cj:k‘|C_j)O(eXp [,B Z ]l{ch}:| ; k=1,...,K
a~N;

- [} is the inverse temperature parameter (crucial, but hard
to estimate!) and A/ ; denotes the neighborhood of pixel ]

» The larger the inverse temperature, the higher the
probability of a column to be in the same cluster of its
neighbors

26



Including spatial information in the model

 We can also extend the basic Potts model with the BNP-

HMREF prior by Lu et al. (2021)

» Clever idea: adding as first-order potentials in the energy
functions the element of a log-stick breaking sequence,

combining two types of weights

Article | Publisher preview available

Bayesian nonparametric priors for hidden Markov
random fields

July 2020 . Statistics and Computing 30(11) . Follow journal
DOI: 10.1007/s11222-020-09935-9

e Hongliang LU - ® Julyan Arbel . Florence Forbes

First order potentials Second order potentials
[ =1
1
p(C | m) = K(m,B) Zlog (7c, +5q2;v Lic,=c;)

» Key point: the distribution above is valid without specifying the number of clusters. Thus, &
can be specified non-parametrically as a Dirichlet Process or Pitman-Yor process

- Adding &t allows to estimate the number of clusters nonparametrically

» We are also exploring the performance using sparse finite mixtures

27




Results

» We developed an efficient CAVI algorithm to perform fast mean-field variational
inference

» The model runs in a matter of minutes - R packages are under development

» Really promising results;

Biclustering model

K-means++ Biclustering model w/ HMIRE
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Rinse and repeat! There is more than just lipids out there

* Denti et al. 2022, introduced a laboratory protocol that enables the cleaning of the
sample from the matrix used after an initial MALDI analysis.

» This step is essential to removing residues from the initial matrix, which was applied to
break specific bonds. Thus, the next analysis can take place.

Denti et al., 2022, “Spatial Multiomics of Lipids, N-Glycans, and Tryptic Peptides on a Single FFPE Tissue Section”, Journal of Proteome Research



Rinse and repeat! There is more than just lipids out there

* |Denti et al. 2022, introduced a laboratory protocol that enables the cleaning of the
sample irom the matrix used after an initial MALDI analysis.

» This stepns essential to removing residues from the initial matrix, which was applied to
break specific bonds. Thus, the next analysis can take place.

DISCLAIMER: | did not invent anything here,
the first author is simply a very smart homonymous

Denti et al., 2022, “Spatial Multiomics of Lipids, N-Glycans, and Tryptic Peptides on a Single FFPE Tissue Section”, Journal of Proteome Research



Rinse and repeat! There is more than just lipids out there

* Denti et al. 2022, introduced a laboratory protocol that enables the cleaning of the
sample from the matrix used after an initial MALDI analysis.

» This step is essential to removing residues from the initial matrix, which was applied to
break specific bonds. Thus, the next analysis can take place.
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Rinse and repeat! There is more than just lipids out there

» Once "washed," a new matrix can be applied to the sample, designed to break a different
type of bond and extract other classes of molecules, such as lipids.

» The extraction order follows a biological rationale in which molecular bonds are broken:
lipids, glycans, and finally, peptides.
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Next step: Poseidon

Our data are, in reality, even more complex: the MALDI-MSI extracts datasets for three
different molecules from the same tissue: lipids, N-glycans, peptides

They all share the same set of pixels, and potentially have a different number of signals

We are developing POSEIDON: POtts model over Separate Exchangeability
Integrating Different Omics Nested data to perform image segmentation led by multiple

sources
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Datasets

Lipids

N-Glycans
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» A more compelling application:

y coord.

H&E stain image

* Clear cell Renal Cell Carcinoma

y coord.

» Lipids, N-glycans, and Peptides

C

y coord.

Next step: Poseidon on ccRCC data
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(A) Lipids (B) N-Glycans (C) Peptides

(E) Poseidon




N-Glycan

S

Peptides

:O%To I ojT T?@T o f T?? T ood bl ol Jf

|} g0 OOJ)(LJ)J)é WL L e L]

lél??iu"qu"% |

=
=5
4
.

_foqojTofHl?%lQJT?“L&éToTT??OT?TT%JJ of léTléqulT?lﬂ o L l

TL 1] off

g 1931sn|D

_oW??O?WT?oT?TTQT TT‘P@T‘P@OTT T

W | 11 l

I, ﬂloj

L [

"

D J23sn|D

YeS ¥

546.23  600.28  620.25 769.35 1053.63  1298.43 1688.66 1926.65 2190.86 2540.02 785.42 1177.6

40

m/z

1477.76  1758.79  2540.18




Calcium imaging

A Bayesian nonparametric model for

Simultaneous Clustering and
Deconvolution of Calcium traces



alcium imaging

A Bayesian nonparametric model for

Simultaneous Clustering and
Deconvolution of Calcium traces




Mapping Neuronal Activity in Real Time

 Neuroimaging uses advanced physiological mechanisms to visually capture and
measure brain function.

* Reveals how individuals and groups of neurons respond during tasks.

* |t helps decode how neurons work together to produce cognition, behavior, and
perception

 \While the anatomical structure is well-known, the functional properties are still
unknown.

* Neurons operate at incredible speed - tracking
their real-time activity is complex but crucial for
breakthroughs in neuroscience.




Calcium imaging measurements

 Miniaturized Microscopes: Compact, high-resolution imaging systems

* Allows real-time neural recording in freely moving subjects

* Fluorescent Calcium Indicators: Chemical markers that bind to calcium ions during

neuronal activation
Individual neuron
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Calcium imaging measurements

* Physiological process behind calcium imaging:
* External Stimulus: Triggers neuronal response

* Neuronal Activation: Calcium floods the cell, causing a temporary increase in intracellular calcium
concentration

* Return to Baseline: When the neuron is at rest, calcium levels return to their normal state

* The fluorescent calcium traces can be used as proxies of the activity over time of individual neurons
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 Example of (a short chunk of) a calcium trace for an individual neuron: it represents
the level of calcium over time, the spikes in the observed concentration correspond
to the neuron’s activation.
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low calcium decay

measurement error

Calcium level
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| | | | | | |
0 10 20 30 40 50 60

Time (seconds)
 Two-step procedure:

 Deconvolution: extraction of the spike train (i.e., the series of recorded firing times). The
spike train is then regarded as the true cleaned signal.

* Analysis of the spike train: definition of summary statistics, models, etc., to link the
neuronal activity with the external conditions that induced It.



Deconvolution

 Many deconvolution methods are based on a biophysical model that relates the observed
fluorescence trace to the calcium dynamic and the

e« Fori=1,...,nandt=1,...,T, y, is the observed fluorescence of neuron i at time 1, ¢; , is the
intracellular calcium concentration of neuron 1 at time .

« A popular model* considers the observed fluorescence y; , as a noisy function of the intracellular
calcium concentration ¢; ..

Yit = bi TC T € €4 N (Oﬁz)

%

* The calcium dynamic is then modeled using an autoregressive process with jumps at the neuron's
firing events.

_ | N :
Ciy=VCis—1 T i S ;T Wy, @y N(0,77)

p

« Here, b; denotes the baseline level, €; . measurement error, y the decay parameter.

Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste, R. and Paninski, L. (2010) Fast nonnegative deconvolution for spike train inference from
population calcium imaging. J. Neurophysiol. 104(6), 3691-3704



The specification of the latent neuronal activity

_ N ,
Ciy=VCis1TQ;;*Si; TW; ,, Wy N(0,77)

p

* An autoregressive component models the calcium dynamics
* An additional component is considered for modeling the calcium spikes

* We distinguish the binary signal indicators and the

. 5., € 10,1 }describes the absence/presence of activation for a neuron I at the time ¢

 a;;, € R, describes its magnitude

U@ UUE@E U



The specification of the latent neuronal activity

_ N ,
Ciy=VCis1TQ;;*Si; TW; ,, Wy N(0,77)

p

* An autoregressive component models the calcium dynamics
* An additional component is considered for modeling the calcium spikes

* We distinguish the binary signal indicators and the

. 5;, € 10,1 }describes the absence/presence of activation for a neuron i at the time ¢

S Ialal X 1=
Oe000®0

d;



Spike trains

* The spike trains are the indicators of the neurons’ activity
over time

* They can be viewed as binary time series: for a neuron 1
— T
S; = 815 -es8; o -8 7] € 10,1}

 Neurons with synchronized activity should be characterized by similarities in the
spike trains

* These series drive the identification of the clusters of co-activating neurons.

U@ UUE@E U



Spike trains

e Difficulties:
* Often the firing events are not strictly synchronous or overlapping in time

« Some observed spikes might be due to measurement error, or they might be
random

* Firing events are not uniformly distributed over time (an observed spike is
produced by several consecutive activations): temporal dependence;

 Not iImmediate how to cluster binary time series

U@ U@ @ U



Data augmentation: the spike probability

* We introduce an underlying continuous process that describes the evolution of the
spike probability over time:

* The spike probability is modeled by a Probit transformation of a Gaussian process

5.(0).

» Conditionally on §.(7), the spikes are generated as independent Bernoulli r.v.

si, | 50 ~ Bernoulli(®(5,2))) forr=1,...,T

1.0
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Clustering spike trains

* ldea: similar evolutions of the spike probability will produce similar spike trains. We can cluster

neurons through these latent series.
k

* Mixture weights:

 We would like to inform the clustering using the anatomical location ¢’

* We use the probit stick-breaking process as prior distribution on the mixture probabilities:

 More similar set of weights are induced on neighboring neurons

m (&) = D) | [ (1 - da ) fork=12,...

r<k

(), a(Zy), ... .a(Z,)] ~N,(0,%) .



Clustering spike trains

* |ldea: similar evolutions of the spike probability will produce similar spike trains.
We can cluster neurons through these latent series.

k

e Mixture atoms:

 Draws from a Gaussian process (indexed by time).

» |ts covariance function €2 describes the temporal dependence between
spikes.

5% % GP(u, Q)



What about the amplitudes?

» We place an additional DP with a spike in zero on the distribution of the magnitudes,
conditionally on the spike trains

a;; | ;P ~ (1 — Si,t) oy + 5, ,P,
P ~ DP (a, P,)

*The model is then completed with the following priors (mostly dictated by conjugacy):

cio~ N (O,CO), b, ~ N (bo, Bo),
1/6* ~ Gamma (h(’)_, h(’)_’), 1/t ~ Gamma (h;, h;’),

}/ ~ Beta (hl}/’ hzy)



A generative look at our model
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A generative look at our model

200+

The neurons are clustered according to a PSB, taking space into account

Gy = ) m(£) - 8
k=1

ANAPS L () = D) [ (1 - S @)

r<k



A generative look at our model

Neurons Location
200+ e : '

The neurons are clustered according to a PSB, taking space into account

1001
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The corresponding atoms are Gaussian processes...
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A generative look at our model

Neurons Location "

200 = ST —« S
2-
1 1
O-
100 1 11
D

Sy
2-
0 11
| N
-1 -
-D -

100 200 0 o5 50 75 100

The corresponding atoms are Gaussian processes...

5% % GP(u, Q)



A generative look at our model

200 1 = D(s,)
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... that are transformed via a Probit transformation

D(FH(1))



A generative look at our model

@(s;)
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These transformed processes models the probability of
spiking over time

si, | 5:(t) ~ Bernoulli(®(5,(2)))

The probability is the same across all the neurons. From
here, we generate the spike trains, one for each neuron



A generative look at our model

Spike trains - Cluster 1
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A generative look at our model

Spike trains - Cluster 1

A second DP models the magnitude of each spike

d; ¢ | Sipp B~ (1 — Si,t) 0 + 8; P
P ~ DP (a, P,)

Neurons
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a* ~ a+ Gamma(a, b)
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Time
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A generative look at our model
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A generative look at our model

Finally, given the spike trains and the magnitudes, we

generate the calcium traces series with
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A generative look at our model

Neurons
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On real data
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 \We consider a short subset of the complete time series of the experiment

 The mouse is left to explore the circular arena

e Data: 229 neurons, more than 5000 time points that we divide into time windows
according to the position of the mouse: center vs. outer ring



Results on a representative time window
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* We group the neurons in 6 clusters

* [op: spike trains + amplitudes

10

* Right: times series and neurons’
locations colored by cluster (cluster 1
with 122 inactive neurons not
reported)
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* Postprocessing: analysis
among time windows

* \We select neurons
frequently clustered
together and try to
understand their spike
patterns associated with
the mouse position
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Discussion - Pose and Poseidon

 We introduced a model for biclustering matrix data, taking into account spatial
Information

 We developed a CAVI algorithm to obtain fast and accurate partitions + easy to draw
Inference on nested partitions

 We have extended the model by integrating multiple datasets

 Open points
 CAVI is sensitive to initialization. How to pick the best starting configuration?
» When to stop? Estimating f and &t introduces approximation in the ELBO

 Extend the framework to different patients, inducing an extra layer of clustering

 Need for even model scalable computational solutions (stochastic VI?)



Discussion - SCDC

 We introduced a BNP model for flexibly modeling calcium imaging traces, performing
simultaneous clustering of neurons and deconvolution.

 Provide a one-step modeling approach to better quantify uncertainty

 Open points

e C++ Implementation of the MCMC algorithm. The time series are long, and the model
could be slow. We focused on different subsets - suboptimal.

e How can the Gaussian Processes be better approximated?
V| strategies for PSB?

 Other modeling approaches: the firing of neurons suggests the use of Hawkes processes
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Next step: Poseidon

ﬁ ﬁ ﬁ —¢ (y(t? | 91(t))1{’"§2:l}'1{0j—k}‘
t,J

T
Dataset-specific Row Partitions p(R|C,0)=]]

Shared Column Partition PCI™) = oim B & D _log(mc;) + 8 Z Lici=cy)
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Some preliminary results

Shared column clustering




Some preliminary results

Shared column clustering
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Some preliminary results

Shared column clustering

From glycans

From lipids

From peptides
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Some prellmlnary results
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An Orwellian problem




An Orwellian problem

Bayesian Analysis (2024) TBA, Number TBA, pp. 1-34

A Finite-Infinite Shared Atoms Nested Model
for the Bayesian Analysis of Large Grouped
Data Sets
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The generalized nested common atoms model
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Common Atoms Model for nested data

. Let (ylaj, — ynj’j) indicate the scores of the songs of the j-th artist
0

Mixture model for the energy distribution of each artist

81



Common Atoms Model for nested data

. Let (yl,j, — ynj’j) indicate the scores of the songs of the j-th artist

®
GGy 2 0= 3w
k=1

The group-specific mixing measures Gj are sampled from a common discrete
distribution Q, where {7, };~; ~ GEM(a)
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Common Atoms Model for nested data

. Let (Y1,j» — ynj,j) indicate the scores of the songs of the j-th artist

ind.

G GO~ 0 =
G| O~ O ;ﬂk@

The group-specific mixing measures Gj are sampled from a common discrete
distribution Q, where {7 };~; ~ GEM(a)

We will refer to Glf 's as the distributional atoms

() is discrete, so ties will occur among the mixing distributions: distributional clustering
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Common Atoms Model for nested data

. Let (ylaj, — ynj’j) indicate the scores of the songs of the j-th artist

©®
G,...G; | O~ Q0 Q=Zﬂk5c;;<
k=1
G = ) w5 0%, 0%, ... ~ G,
[=1

The distributional atoms are themselves discrete random measures, with
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Common Atoms Model for nested data

. Let (Y1,j» — ynj,j) indicate the scores of the songs of the j-th artist

ind.
G,...G; | O~ Q0 Q=Z”k5c;;<
k=1
Gy = 2, o 0%, 0%, ... ~ G,

The distributional atoms are themselves discrete random measures, with

Crucial is the presence of common observational atoms sampled from a base measure G,

G]f IS a discrete mixing distribution, so multiple observations will be assigned to the
same atom Hl*: observational clustering



Common Atoms Model for nested data

. Let (ylaj, — ynj’j) indicate the gene expressions in the j-th pixel

ind.

G,...G; | O~ Q0 Q=Zﬂk5c;;<
k=1
G = ) w5 0%, 0%, ... ~ G,
[=1

{ﬂk}kzl ~ GEM(O() {a)l’k}lzl ~ GEM(ﬁ) Vk Z 1

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

The CAM is one of the many proposals devised to | mssensimsmiss
address the degeneracy property of the nested DP

(see, for example, Beraha et al. (2021), Balocchi et al. (2023), Camerlenghi et al. (2019), A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data
D’Angelo et al. (2023), Denti et al. (2023), Rebaudo et al. (2023), Rodriguez et al. (2011),...) Francesco Denti™*®, Federico Camerlenghl™*®, Michele Guindan! *®, and Antonletta Mira =

aDepartment of Statistics, University of California, Irvine, CA; PDepartment of Economics, Management and Statistics, University of Milano - Bicocca,
Milan, Italy; “Universita della Svizzera italiana, Lugano, Switzerland; University of Insubria, Como, Italy




CAM and correlation

» To measure the dependence across random measures generated by the process,
one can look at COW(GJ-(A), Gj,(A)) with A generic Borel set

- In CAMSs, the correlation does not depend on the specific set A, so it is used as a
measure of generic dependence among the generated G]fs, reflecting the
flexibility of the process

. [Thus we write pj,j, — COFF(GJ', G]’)

 Turns out that, for CAM, this prior correlation is pretty high

1
plEAM) = 1— P (0.5,1)
S l+al+2p
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CAM and correlation - Toy example

» Such high correlation a priori also has an impact a posteriori, especially with density estimation

» Consider the following toy example, where the distributions of different subpopulations have no
shared atoms and a few observations per group (e.g., n; = 10)

~ _ \ | \ |

S 30.3

s ﬂ ‘% 0.2

3 S
- 20.1 | |
§ o 0.0 ) N ) S

S - 0.6 |

S 0.4-

° | | — | |= | | 02

-10 -5 0 5 10
Distributional cluster OO - } \

i 10 -5 0 5 10

88




Density

CAM and correlation - Toy example

» Such high correlation a priori also has an impact a posteriori, especially with density estimation

» Consider the following toy example, where the distributions of different subpopulations have no
shared atoms and a few observations per group (e.g., n; = 10)

» The posterior density estimates contain spurious modes
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An Orwellian problem

» Weights arising from a SB construction have an implicit decreasing stochastic
ordering

- [a)lak] > b [wz,k] > b [a)&k] > b [a)4,k] > ... Vk

» Therefore, the first atoms in the sequence have, in expectation, greater importance:

k — —
Gl — Z a)l,léel* — a)l,léeik -+ 0)2,159§x< -+ 0)3’156;53 + ...
[>1

> — —
G = ) 020 = ) 209 + W, )55 + 3209 + ...
[>1

ko — _
G3 — Z a)l,35(gl>x< — 0)1,35(9f< -+ 0)2,359§x< —+ 0)3,356;§< + ...
[>1

. And this holds across all the distributional atoms Glj“s

. This could imply forced similarities in the Gj’s, even when not motivated by the data



An Orwellian problem

» Weights arising from a SB construction have an implicit decreasing stochastic
ordering

- [a)lak] > b [wz,k] > b [a)&k] > b [a)4,k] > ... Vk

» Therefore, the first atoms in the sequence have, in expectation, greater importance:

k — —
G — Z 0)131591* — a)l,leik -+ 0)2,159§< —+ 0)3,156,? + ...

ko — —
G2 = Z 0)1,25(91* — C()l,zé)ik + 602’259; + (1)3’256)? + ...
[>1

o — —
Gy = Z @1 300 =
[>1

0)1936’ik -+ 0)2,359§< —+ 0)3,356;§x< + ...

. And this holds across all the distributional atoms GZ“S

. This could imply forced similarities in the Gj’s, even when not motivated by the data



Nonparametric vs parametric solutions

Proposition 2.1 Let G;,G; | Q ~ Q and Q ~ geCAM[(L(7), L(wi)|H), with j # j'. Generic SB laws

Then, the correlation between G; and Gy s given by

p;i = Corr(G;,G;)
P lyi; = yur 5

G; #Gj

=1— I—PG:G/ -

( [ J J ] ) (IP) yz,] — yi’,j’
=1—|(1-q1)(1—q2)

where g = P[G; = G| = ) -, E[m;] and

Plyi;j =y | Gi # Gjr

G; =

o — 1 - :
Plyi; =y | Gj = Gy,

Moreover, the correlation is always non-negative.

Gy )

(3)

(1 — g,) is the problematic term,

preventing the correlation from going below
0.5 - it stems only from the observational

weights

» We studied the evolution of the correlations for different specifications:

» PY, 2PB, atom-skipping process (PAM) by Bi and Ji, 2023 - we call it the skip-breaking

process, mostly for marketing reasons :)

- But... what if, instead, we go finite?



Finite-infinite Shared Atoms Nested model

. Let (ylaj, — ynj’j) indicate the scores of the songs of the j-th artist

ind.
Gy Gy 0~ 0 0= n
k=1

[=1

{ﬂk}kzl ~ GEM(O{) {a)l,k}%:l ~/ DlrlChZEtL(ﬁ)

» We studied the behavior of this specification and adopted sparse finite mixtures

 Albelt it seems a simplification, it has an important impact on the model



* One can show that 1 I — 1

pUBAN) — 1 _ —
JAJ l+a(B+ 1)L

» We called the symmetric atoms, “freed by the stochastic ordering” shared atoms,
thus SAN: Share Atoms Nested model

e (0,1)

» This “simplification” does the trick, keeping the model tractable and interpretable

CAM fiISAN
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* One can show that 1 I — 1

pUBAN) — 1 _ —
JJ l+a b+ 1)L

» We called the symmetric atoms, “freed by the stochastic ordering” shared atoms,
thus SAN: Share Atoms Nested model

e (0,1)

» This “simplification” does the trick, keeping the model tractable and interpretable

» Plus: this model specification lends itself to the derivation of a mean-field
variational inference algorithm that

* Allows us to scale the application to large datasets

* Provides point estimates of parameters and partitions,
avolding the label-switching problem

* R packages available on CRAN! Currently working on SANBA

SANvi: Fitting Shared Atoms Nested Models via Variational Bayes



Outline

- Pose and Poseidon: Bayesian model for biclustering large imaging data
- MALDI-Mass Spectrometry Imaging (MSI|) mouse brain data
* Biclustering and grouped data: separate exchangeability
* Image Segmentation: accounting for spatial information with HMRF
 Large dataset: fast estimation via mean-field variational inference
» SCDC: a model for simultaneous clustering and deconvolution of calcium traces
 (Calcium imaging data
e Spatially clustering neurons via PSB

 Deconvolution and detection of spike trains via latent GPs for temporal
dependence

96



