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Image from “MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice”,  
Aichler and Walch, Laboratory Investigation - volume 95, pages 422–431 (2015)

MALDI imaging
• Matrix-Assisted Laser Desorption/Ionisation (MALDI) - MSI tool extracts the 

distribution of molecules (such as lipids) in different locations of a biological sample


• It allows the detection of critical biological traits that would be overlooked with a 
simple visual morphological assessment

• A slide of a biological sample is 
divided into a grid of pixels of 50 
microns each 


• For each pixel, the instrument 
acquires a mass spectrum, a 
collection of molecular 
abundances measured at different 
values of the mass-to-charge 
index m/z (also known as signal)



The motivating datasets

• It is obtained from a slice of the brain 
of a healthy mouse, to be used as a 
benchmark 


• The atlas of the mouse brain is well 
known - this way, biologists can 
validate their preprocessing pipelines


• I will use this dataset as a tool to build 
the model



MALDI-MSI procedure
• We want to develop new statistical methods that take into account the 

information of these complex data
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• We want to develop new statistical methods that take into account the 
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MALDI-MSI procedure
• We want to develop new statistical methods that take into account the 

information of these complex data

• The tissue is covered by a specific substance called 
matrix, which separates a specific molecule (here, 
lipids) from the rest and makes it “ready to be detected” 


• A laser hits the tissue in a specific spot, and a mass 
spectrum is extracted (measuring signal abundance)


• Thus, the data can be organized into a large matrix. We 
have information for approximately more than 1500 
pixels (i.e., different locations)


• Each pixel contains the abundance for approximately 80 
signals (i.e., different lipids)


• Thus, data can be organized in a large matrix



• The MALDI-MSI technique extracts 
the distributions of the abundance 
for different lipid signals (rows) in 
many locations (pixels, columns) 
given a biological sample

Subset of the dataset
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• For each lipid signal, we recover its 
expressions all over the brain slice


• There is spatial information to take 
into account!

Subset of the dataset
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• Within each pixel, we observe a 
distribution of abundances


• Recall that the dataset contains 
around 1000 pixels that we want to 
cluster

Visual summary

Pixel: 510 Pixel: 538 Pixel: 589
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• Within each pixel, we observe an 
abundance of particular signals


• Recall that the dataset contains 
around 1000 pixels that we want to 
cluster

Visual summary

Pixel: 510 Pixel: 538 Pixel: 589
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• We look for “two-dimensional” clustering


• Biclustering of the data: simultaneously group the pixels (columns) and, within 
each column cluster, group the different values of the signals (rows)

Biclustering algorithms

heatmap() R function output on the subset dataset - simultaneous clustering of columns and rows
• The problem reminds us (or only 

me?) of the framework of clustering 
grouped data, for which lively 
literature has recently flourished (see, 
for example, Beraha et al. (2021), Balocchi et al. (2023), 
Camerlenghi et al. (2019), D’Angelo et al. (2023), Denti et al. 
(2023), Rebaudo et al. (2023), Rodriguez et al. (2011),…)


• All these models assume a partially 
exchangeable framework

15



Partial exchangeability
• Partially exchangeable data: the observations are exchangeable within groups 

and conditionally independent across groups 


• For partially exchangeable data, a matrix structure is not needed, as the 
framework disregards the identities of the rows

16



Partial exchangeability
• Partially exchangeable data: the observations are exchangeable within groups 

and conditionally independent across groups 


• For partially exchangeable data, a matrix structure is not needed, as the 
framework disregards the identities of the rows


• It's not ideal for this application, as we want to take the meaning of the rows 
(lipid signals) into account!

17



Separate exchangeability
• There are cases in which one may want to draw inference about the rows’ 

characteristics: we use separate exchangeability (Rebaudo et al., 2021) 


• Separate exchangeability is an ideal framework for modeling matrices where 
rows and columns have specific meanings: once the columns are clustered 
together, the model does not disregard any potential information conveyed by 
the rows

18



Separate Exchangeability through Nested Partitions
• Let  indicate the MALDI-MSI abundance matrix, characterized by  rows (signals) and  columns (pixels) 


• We need column-specific membership labels, denoted with , where  for 
. We will refer to the values in  as distributional cluster (DC) labels.


Y N J

C = (C1, …, CJ) Cj ∈ {1,…, K}
j = 1,…, J C
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Separate Exchangeability through Nested Partitions

• Finally, the data distribution is


• We consider a set of membership labels for the rows within every possible column cluster, defining 
, with  for all  and . 
Rk = (R1,k, …, RN,k) Ri,k ∈ {1,…, L} i = 1,…, N k = 1,…, K

• Let  indicate the MALDI-MSI abundance matrix, characterized by  rows (signals) and  columns (pixels) 


• We need column-specific membership labels, denoted with , where  for 
. We will refer to the values in  as distributional cluster (DC) labels.


Y N J

C = (C1, …, CJ) Cj ∈ {1,…, K}
j = 1,…, J C



Separate Exchangeability through Nested Partitions

The column cluster is the second index of the row cluster! The row cluster 
is shared across all the elements of the column cluster!

Presence of Common Atoms, as in Denti et al. (2023) and Chandra et al. (2023)

• Finally, the data distribution is


• We consider a set of membership labels for the rows within every possible column cluster, defining 
, with  for all  and . 
Rk = (R1,k, …, RN,k) Ri,k ∈ {1,…, L} i = 1,…, N k = 1,…, K

• Let  indicate the MALDI-MSI abundance matrix, characterized by  rows (signals) and  columns (pixels) 


• We need column-specific membership labels, denoted with , where  for 
. We will refer to the values in  as distributional cluster (DC) labels.


Y N J

C = (C1, …, CJ) Cj ∈ {1,…, K}
j = 1,…, J C

Reminiscent of the biclustering model by Lee et al. (2013)



Including spatial information in the model
• Include in the model the spatial correlation that may incur across pixels


• To do so, we use hidden Markov random fields (Besag, 1986) to specify a 
clustering distribution over the columns


• In particular, we use a Potts model with  potential clustersK

?

•  is the inverse temperature parameter (crucial, but hard 
to estimate!) and  denotes the neighborhood of pixel 


• The larger the inverse temperature, the higher the 
probability of a column to be in the same cluster of its 
neighbors

β
𝒩j j

23



Including spatial information in the model

?

•  is the inverse temperature parameter (crucial, but hard 
to estimate!) and  denotes the neighborhood of pixel 


• The larger the inverse temperature, the higher the 
probability of a column to be in the same cluster of its 
neighbors

β
𝒩j j

• Include in the model the spatial correlation that may incur across pixels


• To do so, we use hidden Markov random fields (Besag, 1986) to specify a 
clustering distribution over the columns


• In particular, we use a Potts model with  potential clustersK
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Including spatial information in the model

?

•  is the inverse temperature parameter (crucial, but hard 
to estimate!) and  denotes the neighborhood of pixel 


• The larger the inverse temperature, the higher the 
probability of a column to be in the same cluster of its 
neighbors

β
𝒩j j
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• Include in the model the spatial correlation that may incur across pixels


• To do so, we use hidden Markov random fields (Besag, 1986) to specify a 
clustering distribution over the columns


• In particular, we use a Potts model with  potential clustersK ?

25

https://medium.com/@takashifurukawa1122


Including spatial information in the model

?

Prob of green  

Prob of blue  

Prob of yellow  

∝ exp [5β]
∝ exp [β]

∝ exp [2β]

•  is the inverse temperature parameter (crucial, but hard 
to estimate!) and  denotes the neighborhood of pixel 


• The larger the inverse temperature, the higher the 
probability of a column to be in the same cluster of its 
neighbors

β
𝒩j j

• Include in the model the spatial correlation that may incur across pixels


• To do so, we use hidden Markov random fields (Besag, 1986) to specify a 
clustering distribution over the columns


• In particular, we use a Potts model with  potential clustersK
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Including spatial information in the model
• We can also extend the basic Potts model with the BNP-

HMRF prior by Lü et al. (2021)


• Clever idea: adding as first-order potentials in the energy 
functions the element of a log-stick breaking sequence, 
combining two types of weights

Second order potentialsFirst order potentials

• Key point: the distribution above is valid without specifying the number of clusters. Thus,  
can be specified non-parametrically as a Dirichlet Process or Pitman-Yor process


• Adding  allows to estimate the number of clusters nonparametrically


• We are also exploring the performance using sparse finite mixtures

π

π

27



Results

Biclustering model Biclustering model  
w/ HMRFK-means++

• We developed an efficient CAVI algorithm to perform fast mean-field variational 
inference


• The model runs in a matter of minutes - R packages are under development


• Really promising results:

28
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• Denti et al. 2022,  introduced a laboratory protocol that enables the cleaning of the 
sample from the matrix used after an initial MALDI analysis. 


• This step is essential to removing residues from the initial matrix, which was applied to 
break specific bonds. Thus, the next analysis can take place. 

Denti et al., 2022, “Spatial Multiomics of Lipids, N-Glycans, and Tryptic Peptides on a Single FFPE Tissue Section”, Journal of Proteome Research 

Rinse and repeat! There is more than just lipids out there



Rinse and repeat! There is more than just lipids out there
• Denti et al. 2022,  introduced a laboratory protocol that enables the cleaning of the 

sample from the matrix used after an initial MALDI analysis. 


• This step is essential to removing residues from the initial matrix, which was applied to 
break specific bonds. Thus, the next analysis can take place. 

Denti et al., 2022, “Spatial Multiomics of Lipids, N-Glycans, and Tryptic Peptides on a Single FFPE Tissue Section”, Journal of Proteome Research 

DISCLAIMER: I did not invent anything here,  
the first author is simply a very smart homonymous



• Denti et al. 2022,  introduced a laboratory protocol that enables the cleaning of the 
sample from the matrix used after an initial MALDI analysis. 


• This step is essential to removing residues from the initial matrix, which was applied to 
break specific bonds. Thus, the next analysis can take place. 

Rinse and repeat! There is more than just lipids out there



33

• Once "washed," a new matrix can be applied to the sample, designed to break a different 
type of bond and extract other classes of molecules, such as lipids.


• The extraction order follows a biological rationale in which molecular bonds are broken: 
lipids, glycans, and finally, peptides.

Rinse and repeat! There is more than just lipids out there



Next step: Poseidon
• Our data are, in reality, even more complex: the MALDI-MSI extracts datasets for three 

different molecules from the same tissue: lipids, N-glycans, peptides


• They all share the same set of pixels, and potentially have a different number of signals


• We are developing POSEIDON: POtts model over Separate Exchangeability 
Integrating Different Omics Nested data to perform image segmentation led by multiple 
sources

34
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Next step: Poseidon on ccRCC data

38

• A more compelling application:


• Clear cell Renal Cell Carcinoma


• Lipids, N-glycans, and Peptides
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Calcium imaging

A Bayesian nonparametric model for   


Simultaneous Clustering and 
Deconvolution of Calcium traces



Calcium imaging

A Bayesian nonparametric model for   


Simultaneous Clustering and 
Deconvolution of Calcium traces



• Neuroimaging uses advanced physiological mechanisms to visually capture and 
measure brain function.


• Reveals how individuals and groups of neurons respond during tasks.


• It helps decode how neurons work together to produce cognition, behavior, and 
perception


• While the anatomical structure is well-known, the functional properties are still 
unknown.

Mapping Neuronal Activity in Real Time

• Neurons operate at incredible speed - tracking 
their real-time activity is complex but crucial for 
breakthroughs in neuroscience.



• Miniaturized Microscopes: Compact, high-resolution imaging systems 


• Allows real-time neural recording in freely moving subjects


• Fluorescent Calcium Indicators: Chemical markers that bind to calcium ions during 
neuronal activation 


• Enables precise measurement of the activity of an individual neuron

Calcium imaging measurements



• Physiological process behind calcium imaging:


• External Stimulus: Triggers neuronal response


• Neuronal Activation: Calcium floods the cell, causing a temporary increase in intracellular calcium 
concentration


• Return to Baseline: When the neuron is at rest, calcium levels return to their normal state


• The fluorescent calcium traces can be used as proxies of the activity over time of individual neurons

Calcium imaging measurements



• Example of (a short chunk of) a calcium trace for an individual neuron: it represents 
the level of calcium over time, the spikes in the observed concentration correspond 
to the neuron’s activation.
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• Two-step procedure:


• Deconvolution: extraction of the spike train (i.e., the series of recorded firing times). The 
spike train is then regarded as the true cleaned signal.


• Analysis of the spike train: definition of summary statistics, models, etc., to link the 
neuronal activity with the external conditions that induced it.



Deconvolution
• Many deconvolution methods are based on a biophysical model that relates the observed 

fluorescence trace to the calcium dynamic and the spiking activity.


• For ,   is the observed fluorescence of neuron  at time ,  is the 
intracellular calcium concentration of neuron  at time .


• A popular model* considers the observed fluorescence  as a noisy function of the intracellular 
calcium concentration . 


• The calcium dynamic is then modeled using an autoregressive process with jumps at the neuron's 
firing events.


• Here,  denotes the baseline level,  measurement error,  the decay parameter.

i = 1,…, n and t = 1,…, T yi,t i t ci,t
i t

yi,t
ci,t

bi ϵi,t γ

yi,t = bi + ci,t + ϵi,t, ϵi,t ∼ 𝒩(0,σ2)

ci,t = γci,t−1 + ai,t ⋅ si,t + ωi,t, ωi,t ∼ 𝒩(0,τ2)

 Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste, R. and Paninski, L. (2010) Fast nonnegative deconvolution for spike train inference from 
population calcium imaging. J. Neurophysiol. 104(6), 3691–3704



The specification of the latent neuronal activity

• An autoregressive component models the calcium dynamics


• An additional component is considered for modeling the calcium spikes


• We distinguish the binary signal indicators and the amplitudes of the non-zero 
spikes:


• describes the absence/presence of activation for a neuron  at the time 


•  describes its magnitude

si,t ∈ {0,1} i t

ai,t ∈ ℝ+

ci,t = γci,t−1 + ai,t ⋅ si,t + ωi,t, ωi,t ∼ 𝒩(0,τ2)

si,t



The specification of the latent neuronal activity
ci,t = γci,t−1 + ai,t ⋅ si,t + ωi,t, ωi,t ∼ 𝒩(0,τ2)

ai,t

• An autoregressive component models the calcium dynamics


• An additional component is considered for modeling the calcium spikes


• We distinguish the binary signal indicators and the amplitudes of the non-zero 
spikes:


• describes the absence/presence of activation for a neuron  at the time 


•  describes its magnitude

si,t ∈ {0,1} i t

ai,t ∈ ℝ+

si,t



Spike trains
• The spike trains are the indicators of the neurons’ activity 

over time


• They can be viewed as binary time series: for a neuron i

si = [si,1, …, si,t, …, si,T] ∈ {0,1}T

• Neurons with synchronized activity should be characterized by similarities in the 
spike trains 

• These series drive the identification of the clusters of co-activating neurons.


si,t



Spike trains

si,t

• Difficulties:


• Often the firing events are not strictly synchronous or overlapping in time


• Some observed spikes might be due to measurement error, or they might be 
random


• Firing events are not uniformly distributed over time (an observed spike is 
produced by several consecutive activations): temporal dependence; 


• Not immediate how to cluster binary time series



Data augmentation: the spike probability
• We introduce an underlying continuous process that describes the evolution of the 

spike probability over time:


• The spike probability is modeled by a Probit transformation of a Gaussian process 
.


• Conditionally on , the spikes are generated as independent Bernoulli r.v. 

s̃i(t)

s̃i(t)

si,t ∣ s̃i(t) ∼ Bernoulli(Φ(s̃i(t))) for t = 1,…, T

Time
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• Idea: similar evolutions of the spike probability will produce similar spike trains.  We can cluster 
neurons through these latent series.


• Mixture weights: 


• We would like to inform the clustering using the anatomical location 


• We use the probit stick-breaking process as prior distribution on the mixture probabilities:


• More similar set of weights are induced on neighboring neurons 


ℓi

Clustering spike trains

πk(ℓi) = Φ(αk(ℓi))∏
r<k

(1 − Φ(αr(ℓi))) for k = 1,2,…

[αk(ℓ1), αk(ℓ2), … , αk(ℓn)]T ∼ Nn (0, Σ) .

s̃i ∼ ∑
k

πk(ℓi)δs̃*k



• Idea: similar evolutions of the spike probability will produce similar spike trains. 
We can cluster neurons through these latent series.


• Mixture atoms: 

• Draws from a Gaussian process (indexed by time). 


• Its covariance function  describes the temporal dependence between 
spikes.

Ω

Clustering spike trains

s̃*k
iid∼ GP(μ, Ω)

s̃i ∼ ∑
k

πk(ℓi)δs̃*k



•The model is then completed with the following priors (mostly dictated by conjugacy):

What about the amplitudes?
• We place an additional DP with a spike in zero on the distribution of the magnitudes, 
conditionally on the spike trains

ai,t ∣ si,t, P ∼ (1 − si,t) δ0 + si,tP,

P ∼ DP (α, P0)

ci,0 ∼ N (0,C0), bi ∼ N (b0, B0),

1/σ2 ∼ Gamma (h′￼σ, h′￼′￼σ), 1/τ2 ∼ Gamma (h′￼τ, h′￼′￼τ),

γ ∼ Beta (h1γ, h2γ)



A generative look at our model



The neurons are clustered according to a PSB, taking space into account

πk(ℓi) = Φ(αk(ℓi))∏
r<k

(1 − Φ(αr(ℓi)))

s̃i ∣ ℓi, Gℓi
∼ Gℓi

Gℓi
=

∞

∑
k=1

πk(ℓi) ⋅ δs̃*k

A generative look at our model



The neurons are clustered according to a PSB, taking space into account

s̃i ∣ ℓi, Gℓi
∼ Gℓi

Gℓi
=

∞

∑
k=1

πk(ℓi) ⋅ δs̃*k

The corresponding atoms are Gaussian processes…

A generative look at our model



A generative look at our model

The corresponding atoms are Gaussian processes…

s̃*k
iid∼ GP(μ, Ω)



A generative look at our model

… that are transformed via a Probit transformation

Φ(s̃*k (t))



A generative look at our model

These transformed processes models the probability of 
spiking over time 

si,t ∣ s̃i(t) ∼ Bernoulli(Φ(s̃i(t)))

The probability is the same across all the neurons. From 
here, we generate the spike trains, one for each neuron



A generative look at our model



ai,t ∣ si,t, P ∼ (1 − si,t) δ0 + si,tP,

P ∼ DP (α, P0)

a* ∼ ā + Gamma(a, b)

A generative look at our model

A second DP models the magnitude of each spike



A generative look at our model



A generative look at our model

yi,t ∣ bi, γ, ci,t−1, si,t, ai,t, σ2, τ2 ∼ N(bi + γci,t−1 + si,t ⋅ ai,t, σ2 + τ2)

Finally, given the spike trains and the magnitudes, we 
generate the calcium traces series with



A generative look at our model



• We consider a short subset of the complete time series of the experiment


• The mouse is left to explore the circular arena


• Data: 229 neurons, more than 5000 time points that we divide into time windows 
according to the position of the mouse: center vs. outer ring
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Results on a representative time window

• We group the neurons in 6 clusters


• Top: spike trains + amplitudes


• Right: times series and neurons' 
locations colored by cluster (cluster 1 
with 122 inactive neurons not 
reported)
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• Postprocessing: analysis 
among time windows


• We select neurons 
frequently clustered 
together and try to 
understand their spike 
patterns associated with 
the mouse position



Discussion - Pose and Poseidon
• We introduced a model for biclustering matrix data, taking into account spatial 

information 


• We developed a CAVI algorithm to obtain fast and accurate partitions + easy to draw 
inference on nested partitions 

• We have extended the model by integrating multiple datasets 

• Open points 

• CAVI is sensitive to initialization. How to pick the best starting configuration?


• When to stop? Estimating  and  introduces approximation in the ELBO


• Extend the framework to different patients, inducing an extra layer of clustering


• Need for even model scalable computational solutions (stochastic VI?)

β π



Discussion - SCDC
• We introduced a BNP model for flexibly modeling calcium imaging traces, performing 

simultaneous clustering of neurons and deconvolution.


• Provide a one-step modeling approach to better quantify uncertainty


• Open points 

• C++ implementation of the MCMC algorithm. The time series are long, and the model 
could be slow. We focused on different subsets - suboptimal.


• How can the Gaussian Processes be better approximated?


• VI strategies for PSB?


• Other modeling approaches: the firing of neurons suggests the use of Hawkes processes



THANK YOU FOR YOUR ATTENTION!
Francesco Denti

francesco.denti@unipd.it
University of Padua





Shared Column Partition

Dataset-specific Row Partitions

Next step: Poseidon
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Some preliminary results
Shared column clustering
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Some preliminary results
Shared column clustering
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Some preliminary results
Shared column clustering

From peptides

From glycans

From lipids
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Some preliminary results
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An Orwellian problem



An Orwellian problem



Common Atoms Model for nested data
• Let  indicate the scores of the songs of the -th artist (y1,j, …, ynj,j) j

Mixture model for the energy distribution of each artist

y1,j, …, ynj,j ∣ pj
ind.∼ pj, pj( ⋅ ) = ∫Θ

f( ⋅ ∣ θ)Gj(dθ)
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Common Atoms Model for nested data
• Let  indicate the scores of the songs of the -th artist (y1,j, …, ynj,j) j

y1,j, …, ynj,j ∣ pj
ind.∼ pj,

G1, …, GJ ∣ Q ∼ Q

The group-specific mixing measures  are sampled from a common discrete 
distribution , where  

Gj
Q {πk}k≥1 ∼ GEM(α)

Q =
∞

∑
k=1

πkδG*k

pj( ⋅ ) = ∫Θ
f( ⋅ ∣ θ)Gj(dθ)
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• Let  indicate the scores of the songs of the -th artist (y1,j, …, ynj,j) j

Q =
∞

∑
k=1

πkδG*k

Common Atoms Model for nested data

y1,j, …, ynj,j ∣ pj
ind.∼ pj,

G1, …, GJ ∣ Q ∼ Q

The group-specific mixing measures  are sampled from a common discrete 
distribution , where  

Gj
Q {πk}k≥1 ∼ GEM(α)

We will refer to ’s as the distributional atomsG*k

 is discrete, so ties will occur among the mixing distributions: distributional clusteringQ

pj( ⋅ ) = ∫Θ
f( ⋅ ∣ θ)Gj(dθ)
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Common Atoms Model for nested data
• Let  indicate the scores of the songs of the -th artist (y1,j, …, ynj,j) j

y1,j, …, ynj,j ∣ pj
ind.∼ pj,

G1, …, GJ ∣ Q ∼ Q Q =
∞

∑
k=1

πkδG*k

G*k =
∞

∑
l=1

ωl,kδθ*l θ*1 , θ*2 , … ∼ G0

The distributional atoms are themselves discrete random measures, with
 {ωl,k}l≥1 ∼ GEM(β) ∀k ≥ 1

pj( ⋅ ) = ∫Θ
f( ⋅ ∣ θ)Gj(dθ)
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Common Atoms Model for nested data
• Let  indicate the scores of the songs of the -th artist (y1,j, …, ynj,j) j

y1,j, …, ynj,j ∣ pj
ind.∼ pj,

G1, …, GJ ∣ Q ∼ Q Q =
∞

∑
k=1

πkδG*k

G*k =
∞

∑
l=1

ωl,kδθ*l θ*1 , θ*2 , … ∼ G0

The distributional atoms are themselves discrete random measures, with
 {ωl,k}l≥1 ∼ GEM(β) ∀k ≥ 1

Crucial is the presence of common observational atoms sampled from a base measure G0

 is a discrete mixing distribution, so multiple observations will be assigned to the 
same atom : observational clustering

G*k
θ*l

pj( ⋅ ) = ∫Θ
f( ⋅ ∣ θ)Gj(dθ)
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Common Atoms Model for nested data
• Let  indicate the gene expressions in the -th pixel (y1,j, …, ynj,j) j

y1,j, …, ynj,j ∣ pj
ind.∼ pj, pj( ⋅ ) = ∫Θ

f( ⋅ ∣ θ)Gj(dθ)

Q =
∞

∑
k=1

πkδG*k

θ*1 , θ*2 , … ∼ G0

• The CAM is one of the many proposals devised to 
address the degeneracy property of the nested DP 
(see, for example, Beraha et al. (2021), Balocchi et al. (2023), Camerlenghi et al. (2019), 
D’Angelo et al. (2023), Denti et al. (2023), Rebaudo et al. (2023), Rodriguez et al. (2011),…)

{ωl,k}l≥1 ∼ GEM(β) ∀k ≥ 1{πk}k≥1 ∼ GEM(α)

G1, …, GJ ∣ Q ∼ Q

G*k =
∞

∑
l=1

ωl,kδθ*l



CAM and correlation
• To measure the dependence across random measures generated by the process, 

one can look at  with  generic Borel set


• In CAMs, the correlation does not depend on the specific set , so it is used as a 
measure of generic dependence among the generated , reflecting the 
flexibility of the process


• Thus we write 


• Turns out that, for CAM, this prior correlation is pretty high


Corr(Gj(A), Gj′￼
(A)) A

A
G′￼js

ρj,j′￼
= Corr(Gj, Gj′￼

)

ρ(CAM)
j,j′￼

= 1−
1

1 + α
β

1 + 2β
∈ (0.5,1)
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CAM and correlation -  Toy example
• Such high correlation a priori also has an impact a posteriori, especially with density estimation 

• Consider the following toy example, where the distributions of different subpopulations have no 
shared atoms and a few observations per group (e.g., 10)nj =
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CAM and correlation -  Toy example
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• The posterior density estimates contain spurious modes

• Such high correlation a priori also has an impact a posteriori, especially with density estimation 

• Consider the following toy example, where the distributions of different subpopulations have no 
shared atoms and a few observations per group (e.g., 10)nj =
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• Weights arising from a SB construction have an implicit decreasing stochastic 
ordering

An Orwellian problem

G*1 = ∑
l≥1

ωl,1δθ*l = ω1,1δθ*1 + ω2,1δθ*2 + ω3,1δθ*3 + …

𝔼 [ω1,k] ≥ 𝔼 [ω2,k] ≥ 𝔼 [ω3,k] ≥ 𝔼 [ω4,k] ≥ … ∀k

• Therefore, the first atoms in the sequence have, in expectation, greater importance:

G*2 = ∑
l≥1

ωl,2δθ*l = ω1,2δθ*1 + ω2,2δθ*2 + ω3,2δθ*3 + …

G*3 = ∑
l≥1

ωl,3δθ*l = ω1,3δθ*1 + ω2,3δθ*2 + ω3,3δθ*3 + …

• And this holds across all the distributional atoms ’s


• This could imply forced similarities in the ’s, even when not motivated by the data

G*k
Gj



• Weights arising from a SB construction have an implicit decreasing stochastic 
ordering

An Orwellian problem

G*1 = ∑
l≥1

ωl,1δθ*l = ω1,1δθ*1 + ω2,1δθ*2 + ω3,1δθ*3 + …

𝔼 [ω1,k] ≥ 𝔼 [ω2,k] ≥ 𝔼 [ω3,k] ≥ 𝔼 [ω4,k] ≥ … ∀k

• Therefore, the first atoms in the sequence have, in expectation, greater importance:

G*2 = ∑
l≥1

ωl,2δθ*l = ω1,2δθ*1 + ω2,2δθ*2 + ω3,2δθ*3 + …

G*3 = ∑
l≥1

ωl,3δθ*l = ω1,3δθ*1 + ω2,3δθ*2 + ω3,3δθ*3 + …

• And this holds across all the distributional atoms ’s


• This could imply forced similarities in the ’s, even when not motivated by the data

G*k
Gj



• We studied the evolution of the correlations for different specifications: 


• PY, 2PB, atom-skipping process (PAM) by Bi and Ji, 2023 - we call it the skip-breaking 
process, mostly for marketing reasons :) 


• But… what if, instead, we go finite?

Nonparametric vs parametric solutions
Generic SB laws

 is the problematic term, 
preventing the correlation from going below 
0.5 - it stems only from the observational 
weights

(1 − q2)



Finite-infinite Shared Atoms Nested model
• Let  indicate the scores of the songs of the -th artist (y1,j, …, ynj,j) j

y1,j, …, ynj,j ∣ pj
ind.∼ pj, pj( ⋅ ) = ∫Θ

f( ⋅ ∣ θ)Gj(dθ)

Q =
∞

∑
k=1

πkδG*k

θ*1 , θ*2 , … ∼ G0

• We studied the behavior of this specification and adopted sparse finite mixtures


• Albeit it seems a simplification, it has an important impact on the model

{ωl,k}L
l=1 ∼ DirichletL(β){πk}k≥1 ∼ GEM(α)

G1, …, GJ ∣ Q ∼ Q

G*k =
L

∑
l=1

ωl,kδθ*l



• One can show that


• We called the symmetric atoms, “freed by the stochastic ordering” shared atoms, 
thus SAN: Share Atoms Nested model


• This “simplification” does the trick, keeping the model tractable and interpretable

ρ( fiSAN)
j,j′￼

= 1−
1

1 + α
L − 1

(b + 1)L
∈ (0,1)



• One can show that


• We called the symmetric atoms, “freed by the stochastic ordering” shared atoms, 
thus SAN: Share Atoms Nested model


• This “simplification” does the trick, keeping the model tractable and interpretable


• Plus: this model specification lends itself to the derivation of a mean-field 
variational inference algorithm that 


• Allows us to scale the application to large datasets


• Provides point estimates of parameters and partitions,                             
avoiding the label-switching problem


• R packages available on CRAN! Currently working on SANBA

ρ( fiSAN)
j,j′￼

= 1−
1

1 + α
L − 1

(b + 1)L
∈ (0,1)



Outline

96

• Pose and Poseidon: Bayesian model for biclustering large imaging data 

• MALDI-Mass Spectrometry Imaging (MSI) mouse brain data


• Biclustering and grouped data: separate exchangeability


• Image Segmentation: accounting for spatial information with HMRF


• Large dataset: fast estimation via mean-field variational inference


• SCDC: a model for simultaneous clustering and deconvolution of calcium traces


• Calcium imaging data


• Spatially clustering neurons via PSB


• Deconvolution and detection of spike trains via latent GPs for temporal 
dependence


