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Grouped Data

• Several settings present data with a
grouped structure

✘ Ignore grouping. Neglects
heterogeneity across groups

✘ Assume independence across groups.
Does not allow for sharing of
information

✔ Allow dependence within and between
groups
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FOCUS

In Bayesian Statistics (and Nonparametrics) several modelling approaches exists
☞ different ways to induce dependence among groups

FOCUS on of this talk: mixture models with random number of components

They are less studied than the infinite-dimensional approaches, especially in the
context of grouped data

Most recent and related work:
☞ Colombi et al. (2024) “Hierarchical Mixture of Finite Mixtures”. Bayesian Analysis.



FOCUS

In Bayesian Statistics (and Nonparametrics) several modelling approaches exists
☞ different ways to induce dependence among groups

FOCUS on of this talk: mixture models with random number of components

They are less studied than the infinite-dimensional approaches, especially in the
context of grouped data

Most recent and related work:
☞ Colombi et al. (2024) “Hierarchical Mixture of Finite Mixtures”. Bayesian Analysis.



FOCUS

In Bayesian Statistics (and Nonparametrics) several modelling approaches exists
☞ different ways to induce dependence among groups

FOCUS on of this talk: mixture models with random number of components

They are less studied than the infinite-dimensional approaches, especially in the
context of grouped data

Most recent and related work:
☞ Colombi et al. (2024) “Hierarchical Mixture of Finite Mixtures”. Bayesian Analysis.



Dependent Dirichlet-Multinomial processes

We exploit the well-known Dirichlet-Multinomial construction.

Let G groups, each equipped with a mixture of M components.
For each group g = 1, . . . ,G:

Pg(·)
a.s.
=

M∑
m=1

Wgmδθm (·) (1)

θ1, . . . , θM | M i.i.d.∼ P0 (2)

Wg = (Wg1, . . . ,WgM) | M ∼ Dir (α, . . . , α) (3)

where:

(1) are the mixing measures

(2) are the atoms (shared across groups)

(3) are the mixture weights with Dirichlet marginals

• within each group ☞ Dirichlet-Multinomial process Pg ∼ DMP(α,P0)
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Joint weight distribution

IDEA ☞ Can we directly model the matrix of weights W = {Wg , g = 1, . . . ,G}
to induce dependence across groups?

Properties we require:

• Wgm ∈ (0, 1), for g = 1, . . . ,G , m = 1, . . . ,M

•
M∑

m=1
Wgm = 1, for g = 1, . . . ,G

• Wg = (Wg1, . . . ,WgM) ∼ Dir (α, . . . , α)
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Study of the induced dependence I

Let Pg ,Pℓ ∼ DMP(α,P0); X | Pg ∼ Pg and Y | Pℓ ∼ Pℓ.

For any compatible joint distribution of the weights the following holds:

Proposition (Lower bound correlations)

If Corr(Wgm,Wℓm) ≥ 0 for any m, then:

(i) Corr[Pg(A),Pℓ(A)] ≥
Mα+ 1
Mα+ M

(ii) Corr(X ,Y ) ≥ 1
M

(iii) The lower bounds obtained with independent sequences of weights Wg ⊥ Wℓ

Colombi et al. (2024) with Dirichlet weights ☞ lowest possible correlation

Different approach: joint distribution of the weights via matrix-variate random variables
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Matrix-variate Dirichlet distribution

Let U = (U1, . . . ,UM) be an M-dimensional array of G × G matrices

U has a (symmetric) matrix-variate Dirichlet distribution with parameter α,
and we write U | α ∼ MDirM,G (U | α), if it has a density:

p (U | α) = 1
βαG

M∏
m=1

| Um |α−(G+1)/2
1U∈SM,G

where:

• α > G/2

• βαG is the multivariate beta function (Gupta & Nagar, 2018)

• support:

SM,G =

{
(U1, . . . ,UM) : Um is positive definite for each m and UM = IG −

M−1∑
m=1

Um

}



Matrix-variate Dirichlet distribution

• Olkin and Rubin (1964) ☞ study of the distributional and independence properties

☞ Extensively studied in Gupta and Nagar (2018)

☞ Admits constructive definition via normalisation of Wishart matrices

Why is it of interest to us?

Let Wgm
d
= [Um]gg , then:

✔ Wgm ∈ (0, 1), for g = 1, . . . ,G and m = 1, . . . ,M

✔
M∑

m=1
Wgm = 1, for g = 1, . . . ,G

✔ Wg = (Wg1, . . . ,WgM) ∼ Dir (α, . . . , α)
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Study of the induced dependence II

What is the dependence among groups when using U | α ∼ MDirM,G (U | α)?

Numerical example with G = 2, α > 1
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A new construction

ISSUES

1. matrix-variate Dirichlet construction does not yield a wide range of correlations

2. α > G/2 limits span of correlations and flexibility of resulting distributions

SOLUTIONS

1. leverage the unnormalised construction of the matrix-variate Dirichlet distribution

2. start from Generalised-Wishart distribution to allow for α ≤ G/2 (Srivastava, 2003)
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A new construction

New construction:

Let Sm
i.i.d.∼ Gen-WishartG (2α,Ψ) , then for m = 1, . . . ,M

Sg =
M∑

m=1

[Sm]gg

Wgm = [Sm]gg /Sg

and we write (P1, . . . ,PG) ∼ W-DMP(α,P0,Ψ)

☞ this construction retains information from scale matrix Ψ

☞ no need for matrix inversion or Cholesky decomposition!



Study of the induced dependence III

✰ Correlation under new construction

Numerical example with G = 2, α > 1, Ψ =

(
ψ11 ψ12

ψ12 ψ22

)
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Theoretical Results (part I)

(i) Closure under marginalisation: Pg ∼ DMP(α,P0)

✰ Ψ does not affect the marginal distribution of the processes

(ii) Independence
Wg ⊥ Wℓ (Colombi et al. 2024, Dirichlet weights) recovered when Ψ = IG

(iii) Full-dependence
ψgl → 1 or ψgl → −1 ➠ Wg

a.s.
= Wℓ, Pg

a.s.
= Pℓ

✰ Ψ act as correlation matrix btw rpms
Ψ can be chosen a priori to encode the dependence among rpms



Theoretical Results (Part II)

(i) Distribution of the matrix of weights [W ]gm, for G = 2, conditionally on M > 0

Let Ψ =

(
ψ11 ψ12
ψ12 ψ22

)
and ρ2 =

ψ2
12

ψ11ψ22
∈ [0, 1), then:

p(W ) =
(1 − ρ2)Mα

Γ(α)M

∑
(k1,...,kM )

ρ2KΓ(K + Mα)2
M∏

m=1

(W1mW2m)km+α−1

km!Γ(km + α)
1W∈∆2

M

where km ∈ N ∪ 0, K =
∑

m km, ∆2
M is an appropriate probability simplex.

(ii) Hierarchical representation of p(W )

Wg· = (Wg1, . . . ,WgM) | k = (k1, . . . , kM)
iid∼ Dirichlet(k1 + α, . . . , kM + α), g = 1, 2

k = (k1, . . . , kM)
iid∼ NegBin(α, 1 − ρ2),
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Posterior Characterisation

Let Xgi | (P1, . . . ,PG)
ind∼ Pgand (P1, . . . ,PG) ∼ W-DMP(α,P0,Ψ). Denote with

(X⋆m,m = 1, . . . ,M(obs)) the unique values in the data, and with ng· = (ng1, . . . , ngM) the
corresponding numerosities, then a posteriori (conditionally on M > 0)

Pg(·)
a.s.
=

M(obs)∑
m=1

WgmδX⋆
m
(·) +

M∑
m=M(obs)+1

Wgmδθm (·), g = 1, 2

Wg· = (Wg1, . . . ,WgM) | k iid∼ Dirichlet (k + ng· + α) for g = 1, 2

p(k) ∝

2∏
g=1

B(k + ng· + α)

B(k + α)2

M∏
m=1

[(km + α− 1
km

)
ρ2km

]
1km∈N∪0

Extensions to G > 2 available (more complicated)
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Simulation Study

Simulation setting:

• G = 30 split into 3 blocks of size 10

• Within each block, the true
data-generating mixture has different
weights but same atoms

W true
g =
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2 ,
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1
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3

)
, g = 21, . . . , 30
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Simulation Study

We fit a univariate Normal-Inverse Gamma model

For each simulation setting, the matrix Ψ = [ψ]g1g2
has different off-diagonal elements

for g1, g2 = 1, . . . ,G
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Simulation Study: density estimation

ng = 10, for g = 1, . . . ,G
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Simulation Study: density estimation

ng = 25, for g = 1, . . . ,G
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Simulation Study: density estimation

ng = 100, for g = 1, . . . ,G
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Sex differences in
gene expressions
from the human brain



Application to gene expression data

• Humans carry 23 pairs of
chromosomes as their genetic material
(karyotype)

• 22 pairs are called autosome
1 special pair contains the
XY chromosomes

• virilization process (SRY gene present
in the Y chromosome) ☞ determines
the sex of the offspring
(Female XX / Male XY)

• Karyotype changes across species
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X- and Y-linked genes

• Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes

• Some examples:

• haemophilia ☞ X-linked
• baldness ☞ X-linked
• webbed toes ☞ Y-linked
• hairy ears ☞ thought to be Y-linked

but not yet confirmed (Lee et al. 2004)

• X-Y homologues are genes that are
present in the X and Y chromosomes.
They are very similar (but not
identical)...

• ...also found in non-gonadal tissues
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Application to gene expression data from brain tissue

There is evidence that X- and Y-linked genes contribute to the development of
non-gonadal tissues...what about the brain?

• Gene expressions measured from post-mortem brain samples
Vawter et al. (2004)

• three brain regions
• three laboratories (UC Irvine, UC Davis, UMichigan Ann Arbor)
• 10 subjects (5 male, 5 females)

• We select a subset of genes:
• From Vawter et al. (2024): Y-linked ☞ UTY, USP9Y, SMCY, DBY, RPS4Y
• From Vawter et al. (2024): X-linked ☞ XIST
• + top 14 genes with highest variability across subjects/labs/brain regions (H = 20)
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Each subject represents a group, g = 1, . . . ,G = 10
☞ model the genes within each group via regression:

Ygi
ind.∼ N(θcghi

+ β xi , σ
2
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P (cgh = m | M,W ) = Wgm, m = 1, . . . ,M, h = 1, . . . ,H(
θ1, σ

2
1

)
, . . . ,

(
θM , σ

2
M

)
| M i.i.d.∼ N-inv-Γ

(
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)
W ∼ W-DMP(α = 1,Ψ), M ∼ Poi1 (Λ)

where, within each group, we indicate by hi the gene measured in the i-th observation.

☞ we estimate clustering of the genes across subjects and experimental conditions



Each subject represents a group, g = 1, . . . ,G = 10
☞ model the genes within each group via regression:

Ygi
ind.∼ N(θcghi

+ β xi , σ
2
cghi

), xi = [Labi ,Brain Regioni ]

P (cgh = m | M,W ) = Wgm, m = 1, . . . ,M, h = 1, . . . ,H(
θ1, σ

2
1

)
, . . . ,

(
θM , σ

2
M

)
| M i.i.d.∼ N-inv-Γ

(
θ, σ2 | m0, k0, a0, b0

)
W ∼ W-DMP(α = 1,Ψ), M ∼ Poi1 (Λ)

where, within each group, we indicate by hi the gene measured in the i-th observation.

☞ we estimate clustering of the genes across subjects and experimental conditions



Each subject represents a group, g = 1, . . . ,G = 10
☞ model the genes within each group via regression:

Ygi
ind.∼ N(θcghi

+ β xi , σ
2
cghi

), xi = [Labi ,Brain Regioni ]

P (cgh = m | M,W ) = Wgm, m = 1, . . . ,M, h = 1, . . . ,H(
θ1, σ

2
1

)
, . . . ,

(
θM , σ

2
M

)
| M i.i.d.∼ N-inv-Γ

(
θ, σ2 | m0, k0, a0, b0

)
W ∼ W-DMP(α = 1,Ψ), M ∼ Poi1 (Λ)

where, within each group, we indicate by hi the gene measured in the i-th observation.

☞ we estimate clustering of the genes across subjects and experimental conditions

☞ Number of observations within
each group (total n = 1680)

Subject − 1

Subject − 2

Subject − 3

Subject − 4

Subject − 5

Subject − 6

Subject − 7

Subject − 8

Subject − 9

Subject − 10

Group sample size

0 50 10
0

15
0



Each subject represents a group, g = 1, . . . ,G = 10
☞ model the genes within each group via regression:

Ygi
ind.∼ N(θcghi

+ β xi , σ
2
cghi

), xi = [Labi ,Brain Regioni ]

P (cgh = m | M,W ) = Wgm, m = 1, . . . ,M, h = 1, . . . ,H(
θ1, σ

2
1

)
, . . . ,

(
θM , σ

2
M

)
| M i.i.d.∼ N-inv-Γ

(
θ, σ2 | m0, k0, a0, b0

)
W ∼ W-DMP(α = 1,Ψ), M ∼ Poi1 (Λ)

where, within each group, we indicate by hi the gene measured in the i-th observation.

☞ we estimate clustering of the genes across subjects and experimental conditions

Scale matrix Ψ ☞ dependence
information
specified via the covariate Sexi

Ψ

Groups/Ids

G
ro

up
s/

Id
s

Females

Males



Expressions of sex-specific genes in brain tissue

• Posterior co-clustering probabilities for
H = 20 unique genes

• We actually cluster H × G = 200
different variables (dimension of the
matrix rightarrow)

• Three main clusters are identified
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Expressions of sex-specific genes in brain tissue

• Distinct clustering structures found
for Male and Female groups

• Females:
• Cluster 2: contains Y-linked genes
• Cluster 3: contains XIST (X-linked)

overexpressed

• Males:
• Cluster 2: contains XIST (X-linked)
• Cluster 3: contains Y-linked genes

overexpressed

• Cluster summary:
• Cluster 2: low-expressed genes
• Cluster 3: overexpressed genes
• Cluster 1: all the rest

Estimated cluster sizes within each group (Binder estimate)



Wrap-up

• New framework for grouped data via
mixtures with random number of
components

• Joint modelling of weights via matrix
construction

• Prior correlation btw rpms encoded
through matrix Ψ

• Improved estimation accuracy

• Applied to sex-specific gene
expression; results align with literature
and reveal gene clusters
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Wishart and psuedo-Wishart

We consider Wishart-type rvs for any integer α, a Generalised Wishart distribution.

Let S ∼ Gen-WishartG (2α,Ψ), then:

fGen-Wishart(S) =
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and S22 = S′

12S−1
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Posterior Inference

1. Cluster Allocations and Shared Atoms ➤ simple full-conditionals

2. Weights ➤ sgm | · ∼ mixtures of Gammas depending on ngm, for g = 1, . . . , 2α
We obtain a single Gamma rv when ngm = 0 or Ψ = IG

3. Number of components M ➤ unnormalised weights construction.
Let U = diag(u1, . . . , uG) auxiliary variables, M(empty) := number of empty
components (across groups):

qM(empty)(m) =
(m + M(obs))!

m!
qM(m + M(obs))ψ (u)m , ψ (u) = det

(
IG +

1
2
ΨU
)−α

When qM = Poi1 (Λ):

qM(empty)(m) = π0Poi0 (Λψ (u)) + π1Poi1 (Λψ (u))

π0 =
M(obs)

M(obs) + Λψ (u)
, π1 = 1 − π0

analogous to Argiento and De Iorio (2022) and Colombi et al. (2024) constructions.
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