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Animal Groups

 Several settings present data with a
grouped structure

X Ignore grouping. Neglects
heterogeneity across groups

X Assume independence across groups.
Does not allow for sharing of
information

v Allow dependence within and between
groups



FOCUS

In Bayesian Statistics (and Nonparametrics) several modelling approaches exists
= different ways to induce dependence among groups




FOCUS e

In Bayesian Statistics (and Nonparametrics) several modelling approaches exists
= different ways to induce dependence among groups

FOCUS on of this talk: mixture models with random number of components

They are less studied than the infinite-dimensional approaches, especially in the
context of grouped data



FOCUS e

In Bayesian Statistics (and Nonparametrics) several modelling approaches exists
= different ways to induce dependence among groups

FOCUS on of this talk: mixture models with random number of components

They are less studied than the infinite-dimensional approaches, especially in the
context of grouped data

Most recent and related work:
1= Colombi et al. (2024) “Hierarchical Mixture of Finite Mixtures”. Bayesian Analysis.
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Dependent Dirichlet-Multinomial processes

We exploit the well-known Dirichlet-Multinomial construction.

Let G groups, each equipped with a mixture of M components.
Foreachgroupg=1,...,G:

M
Py(-) & Z Womdonm(-)

01,....0m | M P,
Wy, = (Wy1,..., Wou) | M~ Dir(a,...,a)

where:

(1)
(2) are the atoms (shared across groups)
(3) are the mixture weights with Dirichlet marginals

are the mixing measures

+ within each group = Dirichlet-Multinomial process Py ~ DMP(«, Po)
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Joint weight distribution

IDEA = Can we directly model the matrix of weights W = {W,,g =1, ...

to induce dependence across groups?

Properties we require:

s Wom € (0,1), forg=1,....,G, m=1,....M

—_

forg=1,...,G

Mz

Wom =

3

Il
R

m

s Wy = (Wgi,..., Wom) ~ Dir(a, ..., a)

7G}



Study of the induced dependence |

Let Py, P, ~ DMP(a, Po); X | Py~ Pyand Y | Py ~ P.

For any compatible joint distribution of the weights the following holds:

Proposition (Lower bound correlations)
If Corr(Wym, Wem) > 0 for any m, then:

(i) CorrlPy(A), Pc(A)] > ,‘A,;’S : ,:4
1

(i) Corr(X,Y) >

(iii) The lower bounds obtained with independent sequences of weights Wy L W,
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Let Py, P, ~ DMP(a, Po); X | Py~ Pyand Y | Py ~ P.

For any compatible joint distribution of the weights the following holds:

Proposition (Lower bound correlations)
If Corr(Wym, Wem) > 0 for any m, then:

(i) CorrlPy(A), Pc(A)] > ,‘A,;’S : ,:4
1

(i) Corr(X,Y) >

(iii) The lower bounds obtained with independent sequences of weights Wy L W,

Colombi et al. (2024) with Dirichlet weights = lowest possible correlation

Different approach: joint distribution of the weights via matrix-variate random variables




Matrix-variate Dirichlet distribution e

Let U= (Us,...,Uu) be an M-dimensional array of G x G matrices

U has a (symmetric) matrix-variate Dirichlet distribution with parameter «,
and we write U | a ~ MDiry ¢ (U | «), if it has a density:

U | Oé H | U —(G+1)/2 ]lUESM,G

where:
ca>G/2
+ B& is the multivariate beta function (Gupta & Nagar, 2018)
* support:
Sue = {(U1 ..., Uu) : Un is positive definite for each mand Uy = Ig — ME? Um}

m=1
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Matrix-variate Dirichlet distribution e

+ Olkin and Rubin (1964) = study of the distributional and independence properties
= Extensively studied in Gupta and Nagar (2018)

= Admits constructive definition via normalisation of Wishart matrices

Why is it of interest to us?

Let Wom 2 [Un]gg, then:

v Wygme(0,1),forg=1,....,.Gandm=1,....M

<

v Wgm=1,forg=1,....G
1

m

v

=

:(Wg1,...,WgM)NDiI’(O(,...,OJ)



Groups (9)

[Unls | [Unl ;2| [Unli O
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Groups (9)

(U] 11| [Unlyz |[Unlis  |[Uulig
[UM]ZG
[UZ]ﬂ [U2]w2 [U2]|3 [U2]|Gf
[Unlag
(Uil (U] | U Uilyg 1P
(Uil | Wil 101h| {101 |l
[U|]31 [U1]32 [Ui]za [UW]:AG
(U6 |[Uilge | (Uil g [U]gg]

Groups (9)

o LetU ‘ o~ MDiI’M’G(U | a)

» The diagonal slice of this array has the
required properties

*+ We set Wym = [Un]gq
forg=1,....,.Gandm=1,.... M
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What is the dependence among groups when using U | o« ~ MDiry g (U | «)?

Numerical example with G =2, a > 1

Correlation
o
(91
o

25 50 75 100
concentration parameter

M=15

variable
== COIT.pM
=== corr.obs

Ib.rpm
Ib.obs

1.001

Correlation
o o o
N (1) ~
[$;] o (4]

0.00 1

variable
== COIT.IpM
=== COIT.0bS
= = |b.rpm

Ib.obs

25 50 75 100
concentration parameter

M =1+ Poi(10)
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2. a > G/2 limits span of correlations and flexibility of resulting distributions



A new construction e

ISSUES

1. matrix-variate Dirichlet construction does not yield a wide range of correlations
2. a > G/2 limits span of correlations and flexibility of resulting distributions

SOLUTIONS

1. leverage the unnormalised construction of the matrix-variate Dirichlet distribution
2. start from Generalised-Wishart distribution to allow for o < G/2 (Srivastava, 2003)



A new construction e

New construction:
ii.d.

Let Sm ~ Gen-Wishartg (2a, V) , thenform=1,.... M

M

Sg = Z [Sm]gg

m=1

ng = [Sm]gg /Sg

and we write (P4, ..., Pg) ~ W-DMP(a;, Po, V)
= this construction retains information from scale matrix W

1= no need for matrix inversion or Cholesky decomposition!



Study of the induced dependence lli e

“¢ Correlation under new construction

Y11 P2

Numerical example with G=2,a > 1, ¥ =
P12 P

1.00 variable 1.00 variable

=== corr.rpm_.99 === cOIr.rpm_.99
=== COrr.rpm_.6 === corr.rpm_.6

=== corr.rpm_.3 === corr.rpm_.3

o
3
o
<)
by
o

w== corr.rpm_.0 w=_ corr.rpm_.0

Ib.rpm Ib.rpm

== corr.obs_.99

Correlation
o
o
3
1
.
Correlation
o
o
o
1
.

=== corr.obs_.99
; === corr.obs_.6 === COIT.0bS_.6

=== corr.obs_.3 ' === corr.obs_.3
& — corm.obs_.0
0.00 = = Ib.obs 0.00 = = Ib.obs

25 5.0 75 10.0 25 5.0 75 10.0
concentration parameter concentration parameter

o
N
a
o
N
@

== corr.obs_.0

M=5 M =1+ Poi(10)



Theoretical Results (part I) e

(i) Closure under marginalisation: Py ~ DMP(«, P)
¢ W does not affect the marginal distribution of the processes

(i) Independence
W, L W, (Colombi et al. 2024, Dirichlet weights) recovered when ¥ = I

(iii) Full-dependence
Yo — 1or Vg — —1 Wg as W, Pg as P,

“¢ W act as correlation matrix btw rpms
W can be chosen a priori to encode the dependence among rpms



Theoretical Results (Part Il)

(i) Distribution of the matrix of weights [W] ., for G = 2, conditionally on M > 0

_ (11 12 5 W .
Letv = <’¢)12 i and p© = Tirom € [0,1), then:

M
(1 = p2)Me 2K 2 (Wim Wap)fim et
W)y=-—"—"—" E MK+ M | | -~ 1
p(W) M(a)M - ‘_‘kM)p ( ) L4 k!l (km + o) weaj

where km e NUO, K =3~ km, A%/, is an appropriate probability simplex.



Theoretical Results (Part Il)

(i) Distribution of the matrix of weights [W] ., for G = 2, conditionally on M > 0

_ (11 12 5 W .
Letv = (%2 i and p© = Tirom € [0,1), then:

M
(1 = p2)Me 2K 2 (Wim Wap)fim et
W)y=-—"—"—" E MK+ M | | -~ 1
p(W) M(a)M i kM)p ( ) L4 k!l (km + o) weaj

where km e NUO, K =3~ km, Aﬁ/, is an appropriate probability simplex.

(i) Hierarchical representation of p(W)

Wy = (Wyr, ..., Wou) | k= (ki kn) % Dirichlet(ky + a,...., ky +a), g=
k= (k17"'7kM) igNegBln(Oév'1 _p2)7

1,2




Posterior Characterisation

Let Xy | (P1, ..., Pg) ™ Pgand (P, ..., Pg) ~ W-DMP(a, Py, W). Denote with

(X%, m=1,..., M) the unique values in the data, and with ng. = (g1, ..., Ngy) the
corresponding numerosities, then a posteriori (conditionally on M > 0)
M(obs) M
Po() 2 D7 Womdxa()+ D> Wamdp,(), g=1,2
m=1 m=M(0bs) |1

Wy = (Wyr, ..., Wou) | k % Dirichlet (k + ng. + o)  forg=1,2

2
[1B(k+ng ) y 1
=1 m+ o —
k 9 2km:| 1
p(k) o Bk o) ml [ {( Ko )P km€NUO




Posterior Characterisation

Let Xy | (P1, ..., Pg) ™ Pgand (P, ..., Pg) ~ W-DMP(a, Py, W). Denote with
(X%, m=1,..., M) the unique values in the data, and with ng. = (g1, ..., Ngy) the
corresponding numerosities, then a posteriori (conditionally on M > 0)
M(obs) M
Po() 2 D7 Womdxa()+ D> Wamdp,(), g=1,2
m=1 m=M(0bs) |1

Wy = (Wyr, ..., Wou) | k % Dirichlet (k + ng. + o)  forg=1,2

2
[1B(k+ng. +a) P ]
=1 m+ o —
Koo ] ZkM} 1
p(k) o B(k 1 )2 1 {( Ko )P km€ENUO

Extensions to G > 2 available (more complicated)




Simulation Study
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Simulation Study

Simulation setting:
» G = 30 split into 3 blocks of size 10

« Within each block, the true
data-generating mixture has different
weights but same atoms

(0.3.3), g=1,...,10
wee =3 (1,40, g=11,....20
(%7%7%)7 g=21,...,30
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Simulation Study e

We fit a univariate Normal-Inverse Gamma model

For each simulation setting, the matrix W = [w]w2 has different off-diagonal elements
forgi,go=1,...,G

y=0
Groups
vmoe (i) v =0.0
/ (i) v =05
eroups (iii) v = 0.9

Groups
III |
i
o
©

Groups



Simulation Study: density estimation

ng=10,forg=1,...,G

Block 1
010

Block 1
010

Block 1

Block 2
010

Block 2
010

000 010 020 000

Block 3
005 010

Block 3
010

Block 3

000 005 010 015

2 ° 2

(i) =0.0

2 ° 2

(ii)p = 0.5

E) ° 2 i ©

(iii) ¢ = 0.9



Simulation Study: density estimation

ng=25forg=1,...,G

& &
g3 g3 g3
8 g -

g g
kR g g

000

Block 3
010
Block 3

010

Block 3

010

5 - 2 o 2

(i) =0.0 (ii)p = 0.5

000

(iii) ¢ = 0.9



Simulation Study: density estimation

ng=100,forg=1,...,G

Block 1
010

Block 1
010

Block 1

020 o000 o010 02

Block 2
010

Block 2
010

000 om0

Block 3
010

(i) =0.0

(ii)p = 0.5

o oo
g3 8°
@ @
B s 2 o z i © © 2 3 z © © 2 [ z c

(iii) ¢ = 0.9



Sex differences in
gene expressions
from the human brain




Application to gene expression data ie

* Humans carry 23 pairs of
chromosomes as their genetic material

(karyotype) (1( ,2< \S )4( )5(
O O T (N[O A

'S AT
o uu




Application to gene expression data ie

* Humans carry 23 pairs of
chromosomes as their genetic material

(karyotype) (T X X

R essenceu i ([ )¢ ()0 )

Xyehromesones DI S
K x wu §o

21
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* Humans carry 23 pairs of
chromosomes as their genetic material

(karyotype)

22 pairs are called autosome
1 special pair contains the
XY chromosomes

* virilization process (SRY gene present
in the Y chromosome) == determines
the sex of the offspring
(Female XX / Male XY)




Application to gene expression data e

* Humans carry 23 pairs of
chromosomes as their genetic material

(karyotype)

22 pairs are called autosome
1 special pair contains the
XY chromosomes

* virilization process (SRY gene present
in the Y chromosome) == determines
the sex of the offspring
(Female XX / Male XY)

» Karyotype changes across species
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» Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes
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X- and Y-linked genes

Hemophilia

Normal blood vessel

Platelets and
clotting factors

Blood

Uncontrolled
bledding

i
[
Cleveland

linic
©2022

» Some traits are sex-specific and the

corresponding genes carried by X or Y
are called X-linked and Y-linked genes

+ Some examples:

» haemophilia = X-linked
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» Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes

. o o . + Some examples:

» haemophilia = X-linked
» baldness = X-linked

MALE
PATTERN
BALDNESS
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» Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes

+ Some examples:
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* baldness = X-linked
» webbed toes = Y-linked




X- and Y-linked genes e

« Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes

+ Some examples:
+ haemophilia == X-linked
+ baldness = X-linked
» webbed toes = Y-linked
+ hairy ears = thought to be Y-linked
but not yet confirmed (Lee et al. 2004)




X- and Y-linked genes

Sex Chromosome

Homologous region
between X and Y

-« D X

Non-homologous region
between Xand Y

™

X-linked

» Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes

+ Some examples:
» haemophilia = X-linked
+ baldness = X-linked
ihked + webbed toes = Y-linked
« hairy ears = thought to be Y-linked
but not yet confirmed (Lee et al. 2004)

» X-Y homologues are genes that are

inheritance

present in the X and Y chromosomes.
They are very similar (but not
identical)...



X- and Y-linked genes

Some traits are sex-specific and the
corresponding genes carried by X or Y
are called X-linked and Y-linked genes

Some examples:
» haemophilia = X-linked
+ baldness = X-linked
+ webbed toes = Y-linked
+ hairy ears = thought to be Y-linked
but not yet confirmed (Lee et al. 2004)

X-Y homologues are genes that are
present in the X and Y chromosomes.
They are very similar (but not
identical)...

...also found in non-gonadal tissues



Application to gene expression data from brain tissue

There is evidence that X- and Y-linked genes contribute to the development of
non-gonadal tissues...what about the brain?



Application to gene expression data from brain tissue e

There is evidence that X- and Y-linked genes contribute to the development of
non-gonadal tissues...what about the brain?

» Gene expressions measured from post-mortem brain samples
Vawter et al. (2004)
+ three brain regions
« three laboratories (UC Irvine, UC Davis, UMichigan Ann Arbor)
» 10 subjects (5 male, 5 females)

» We select a subset of genes:
« From Vawter et al. (2024): Y-linked = UTY, USP9Y, SMCY, DBY, RPS4Y
» From Vawter et al. (2024): X-linked = XIST
» +top 14 genes with highest variability across subjects/labs/brain regions (H = 20)



Each subject represents a group, g=1,...,G=10 ie
== model the genes within each group via regression:

ind.

Yoi ™ N(cy, +:3xi7‘7§gh,)7 x; = [Laby, Brain Region|]
P(Cgh=m|M, W)= Wam, m=1,....M, h=1,....H
(91,012) (eM,aﬁd) | M5 Neinv-T (9,02 | Mo, Ko, @, bo)
W ~ W-DMP(a = 1,), M ~ Poi; (A)

where, within each group, we indicate by h; the gene measured in the i-th observation.
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Each subject represents a group, g=1,...,G=10 ie
== model the genes within each group via regression:

ind.

Yo ™ N(Ocy, + B X, aighi), x; = [Laby, Brain Region|]
P(cgh=m|M W)= Wy, m=1,.... M, h=1,... H
(91,012) (eM,a%,,) | M X Neinv-r (9,02 | mo, ko, @, b0>
W ~ W-DMP(a = 1,W¥), M ~ Poi; (A)
where, within each group, we indicate by h; the gene measured in the i-th observation.

= we estimate clustering of the genes across subjects and experimental conditions

= Number of observations within —
each group (total n = 1680) — \




Each subject represents a group, g=1,...,G=10 ie
== model the genes within each group via regression:

Yy ' N(0ey, + B X, Uighi), X; = [Lab;, Brain Region,]
P(cgh=m|M W)= Wy, m=1,.... M, h=1,... H
(91,012) (eM,a%,,) | M X Neinv-r (9,02 | mo, ko, @, b0>
W ~ W-DMP(a = 1,W¥), M ~ Poi; (A)
where, within each group, we indicate by h; the gene measured in the i-th observation.

= we estimate clustering of the genes across subjects and experimental conditions

w

Scale matrix W = dependence

information
specified via the covariate sex;

Groups/ids

Groups/ids



Expressions of sex-specific genes in brain tissue

* Posterior co-clustering probabilities for
H = 20 unique genes

» We actually cluster H x G = 200
different variables (dimension of the
matrix rightarrow)

* Three main clusters are identified

1.0

0.8

0.6

0.4

0.2

0.0



Expressions of sex-specific genes in brain tissue ie

Subj7 - F

Distinct clustering structures found
for Male and Female groups

Subj1 - F

Subj10 - F

* Females:
» Cluster 2: contains Y-linked genes

« Cluster 3: contains XIST (X-linked)
overexpressed

» Males:
» Cluster 2: contains XIST (X-linked)

 Cluster 3: contains Y-linked genes
overexpressed

Subj2 - M

Subj5 - M

Subj6 - M

Subjg - M

* Cluster summary:
S \q'
» Cluster 2: Jow-expressed genes & ey

+ Cluster 3: overexpressed genes Estimated cluster sizes within each group (Binder estimate)
« Cluster 1: all the rest



Wrap-up e

Animal Groups
» New framework for grouped data via P e

mixtures with random number of
components

Joint modelling of weights via matrix

) b
construction \
Insects
* Prior correlation btw rpms encoded
through matrix W 7 N
 Improved estimation accuracy
Amphibians

Applied to sex-specific gene
expression; results align with literature Birds
and reveal gene clusters



Wrap-up e

» New framework for grouped data via
mixtures with random number of
components

Joint modelling of weights via matrix
construction

Prior correlation btw rpms encoded
through matrix v

Improved estimation accuracy

Applied to sex-specific gene
expression; results align with literature
and reveal gene clusters
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Wishart and psuedo-Wishart e

We consider Wishart-type rvs for any integer «, a Generalised Wishart distribution.

Let S ~ Gen-Wishartg (2c, V), then:

a— 1

(det S) g exp{—%tr(\U71S)}
aG «@
2 Tg(%)(detw)2

a>G/2
2

fGen-Wishart(S) =
(detS11) xp{ — 5 tr[W ™ s]} o< G/2

oG- a)/ZQTG a(§)(derw) 8

S11 812

where in the singular case S = | _,
12 S

> and S = 34231_11812.
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Posterior Inference e

1. Cluster Allocations and Shared Atoms » simple full-conditionals

2. Weights » sgm | - ~ mixtures of Gammas depending on ngm, forg=1,...,2«a
We obtain a single Gamma rv when ngn =0 or ¥ =g

3. Number of components M » unnormalised weights construction.
Let U = diag(u, . . ., ug) auxiliary variables, M®™Y) := number of empty
components (across groups):

(m 4 M©9)y1

i oo
Quenoy (M) = =————=qu(m + M)y ()", w00=daoh+§wu)

When qu = Poiy (A):

qM(empzy)(m) = moPoig (/\1/) (U)) + m1Poi4 (/\1/1 (U))
M(obs)
M@ 1 Ao (4)

T = ,m =1—mp

analogous to Argiento and De lorio (2022) and Colombi et al. (2024) constructions.
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