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Sampling on Constrained Spaces: Why?

Many statistical problems involve constraints — on parameters, on data, or jointly on
both. Closed-form solutions are often unavailable, making sampling methods essential.
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Sampling on Constrained Spaces: Why?

Many statistical problems involve constraints — on parameters, on data, or jointly on
both. Closed-form solutions are often unavailable, making sampling methods essential.

In some cases, complex sampling problems can be reformulated as problems with arti-
ficial constraints, opening the door to new methodological tools.
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Overparametrized models [Bornn et al., 2019]

» Data with support si,

.., 54, such that Pr(y; = s;) = 6}, nuisance parameters
» /3 parameter of interest (e.g. regression)

» priors on both 8 and 0, overparametrized!
Moment-type conditions

J
Eylg(y), Bl = /g(y,ﬁ)f(dy) = 0g(s;,8) =0
i=1

Example (J =2): y € {0,1}
parameters 0,1 — 6

s eoxB=g(10 )
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Overparametrized models [Bornn et al., 2019]
» Data with support si, ..

., 5y, such that Pr(y; = s;) = 0}, nuisance parameters.
» /3 parameter of interest (e.g. regression)

» priors on both 8 and 0, overparametrized!
Moment-type conditions

J
Eylg(y), Bl = /g(y,ﬁ)f(dy) = 0g(s;,8) =0
i=1

Example (J =2): y € {0,1}

parameters 0,1 — 6
A\

< {(0.8) € © x BIS = log (139)}

. also in Empirical likelihood, Econometrics [Gallant, 2023]
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Manifold from data generating equation

» Intractable likelihood: prior 7w(#), random/model
components u ~ p(ulf), on

S=1{(0, uj)c©x Ulg(0,u) =y i=1,...,n}.

and keeping only 0, we sample 7(6]y°).

[Graham and Storkey, 2017]
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Manifold from data generating equation

» Intractable likelihood: prior 7w(#), random/model
components u ~ p(ulf), on

S=1{(0, uj) € ©x Ulg(0,u) =y i=1,...,n}.

and keeping only 0, we sample 7(6]y°).

[Graham and Storkey, 2017]

» Similar reasoning for models with intractable prior:

S, = {(97 Ui) € eXUD/: = g(ulae)vqj(y79)+mj(0) = 07 =

u7

12

08

L/g%“ L/

39T 21013

[Bortolato and Ventura, 2024], g;, m; derivatives of loglikelihood/prior.
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Sampling probability distribution functions on submanifolds

Object of interest:

r(x) = f(x)1{x € S}(I

> s, f(x)>0, Z normalizing constant,

S = {x € RP|g(x) = 0 € R™}, submanifold
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Sampling probability distribution functions on submanifolds

Object of interest:

f(x)1{x € S}(I

> s, f(x)>0, Z normalizing constant,

(x) =
S = {x € RP|g(x) = 0 € R™}, submanifold

Difficulties:
1. Z unknown

2. Proposing points in RP won't work.

Andersen, 1983, Rattle: A "velocity” version of the shake algorithm for molecular dynamics calculations.
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Metropolis—Rosenbluth—Teller—Hastings on submanifolds

Random walk [Zappa et al., 2018]:
define Vq(x) gradient, 7, = {x* € RP|Vq(x)"(x* —x) =0}, d =D —m.

1. Start from x € S.

2. Compute Uy, an orthonormal basis of 7.

3. Draw d-dimensional v ~ p, and propose a step on T,: x + Uyv.

4. Follow the direction given by Vg(x) to project on S: y = x + U, + Vg(x)a for some «
such that y € S (Projection).

5. Check whether x can be reached from y (Reverse projection).

6. Accept/reject.
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Projections
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Projections

Projections (and reverse projections) employ Newton's method to find a root of
a(x + U + Vg(x)a)

moving o € R™.
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Projections

Projections (and reverse projections) employ Newton's method to find a root of
a(x + U + Vg(x)a)

moving o € R™.
If a solution is not found, the chain remains at its current state.
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A closer look at the proposal

The proposal distribution can be written as

q(x, dy) = r(x)dx(dy) + (1 — r(x)) | det DG,(y)|p.(v)os(dy) - (1)
K(xdy).

DG,(y) = U, U, is the differential of the map G,

Ge(y) = Ul (y —x) = (2)

defines a one-to-one relation among y and v.

Elena Bortolato UPF-BSE 10 / 35
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Acceptance probability

Acceptance ratio evaluated only when the projection steps succeed

f(y)| det DG, (x)|p (V')
f(x)|det DGx(y)|p.(v)’

The determinants cancel out: |det U/ U,| = | det UyT Uyl

Elena Bortolato UPF-BSE 11 /35
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Efficiency - Convergence 7

1. Computational cost: O(m?D)
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Efficiency - Convergence 7

1. Computational cost: O(m?D)

2. How long should the chain run?
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Uniform distribution on &
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Uniform distribution on &
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converged?
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Traceplot of ||x||

250 500 750 1000
iteration

Elena Bortolato UPF-BSE 14 / 35

o



Coupled markov chains

Overview

© Coupled markov chains

Elena Bortolato UPF-BSE 15/ 35



Motivation Manifold MCMC methods Coupled markov chains Sampling on *artificial* submanifolds References

Coupled Markov chains on submanifolds

Produce pairs of MCMC chains (X;) and (X:), with law(X;) = law(X;) that after a random
meeting time 7 € N for all t > 7, X; = X,—_|.

Elena Bortolato UPF-BSE 16 / 35
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Coupled Markov chains on submanifolds

Produce pairs of MCMC chains (X;) and (X:), with law(X;) = law(X;) that after a random
meeting time 7 € N for all t > 7, X; = X,—_|.

Monte Carlo estimates based on independent copies of 7:

> Bounds [Biswas et al., 2019] |m; — 7|7y < E [max (0, F*t*ﬂ)} ,Vt.

» Unbiased estimates of functions h(X) [Glynn and Rhee, 2014][Jacob et al., 2020].

» Asymptotic variance of the chains [Douc et al., 2022].

Elena Bortolato UPF-BSE 16 / 35
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Proposing the same point

7= Gx(y) = Ui (y — %)
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Coupling of proposals with point masses
Coupled transition kernels

q(x, dy) = r(x)dx(dy) + (1 — r(x))k(x, dy),
q(X,dy) = r(%)dz(dy) + (1 — r(%))k(X, dy),

Y ~ q(x,dy) and Y ~ g(%,dy) s.t. Y = Y sometimes

without evaluating r(x).

Elena Bortolato UPF-BSE 18 / 35
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Coupling of proposals with point masses
Coupled transition kernels

q(x, dy) = r(x)dx(dy) + (1 — r(x))k(x, dy),
q(%, dy) = r(%)dsz(dy) + (1 — r(X))k(%, dy),

Y ~ q(x,dy) and Y ~ g(%,dy) s.t. Y = Y sometimes

without evaluating r(x).
» Draw Y ~ q(x,dy), W ~ Uniform(0, 1).
> If Y #xand W < k(X,Y)/k(x, Y) then (Y,Y)

» Else, enter while loop:

> Draw Y ~ g(&, dy).

> If Y =%, return (Y, Y).
> Else draw W* ~ Uniform(0, 1). 5 5 used in k(%, dy)
> If W* > k(x,Y)/k(X,Y), return (Y, Y).

Elena Bortolato UPF-BSE 18 / 35
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Reflection-contractive couplings

With the previous coupling. ..
» If chains are distant, they evolve independently
» Reflection couplings in the ambient space + rotation / projections help in
obtaining meeting times faster

(Intuition)

T

Elena Bortolato UPF-BSE 19 / 35



Scaling properties: sequence of Hyperspheres
Setting: Uniform distribution on #S? = {x € RP |Z,.D=1 x?=1},d =D —1 € {5,10,15,20}
M Maximal coupling only
M+R Maximal coupling + reflections if ||x — %||3 > 1/v/d = & (scale of the proposal kernel)
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Can we use that beyond sampling on hyperspheres?
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Coupled markov chains

Can we use that beyond sampling on hyperspheres?
Hypershperes with different radii are level sets of the Gaussian...




Coupled markov chains
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Contour walk
Taking g(-) := m,(-) the disintegration defines a distribution on the level sets.
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Contour walk
Taking g(-) := m,(-) the disintegration defines a distribution on the level sets.

Algorithm
> fix go = q(x)
» move on S = {x € X|q(x) — qo = 0} leaving 7 invariant.

» change level set leaving 7, invariant (e.g. random walk).
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Contour walk
Taking g(-) := m,(-) the disintegration defines a distribution on the level sets.

Algorithm
> fix go = q(x)
» move on S = {x € X|q(x) — qo = 0} leaving 7 invariant.

» change level set leaving 7, invariant (e.g. random walk).

Intuition
Moves on contour sets follow "relevant directions” for the target 7, (large steps).
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Contour walk
Taking g(-) := m,(-) the disintegration defines a distribution on the level sets.

Algorithm
> fix go = q(x)
» move on S = {x € X|q(x) — qo = 0} leaving 7 invariant.

» change level set leaving 7, invariant (e.g. random walk).

Intuition
Moves on contour sets follow "relevant directions” for the target 7, (large steps).
explore "fast” the D — 1 contour sets of m,,
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Contour walk
Taking g(-) := m,(-) the disintegration defines a distribution on the level sets.

Algorithm
> fix go = q(x)
» move on S = {x € X|q(x) — qo = 0} leaving 7 invariant.
» change level set leaving 7, invariant (e.g. random walk).

Intuition
Moves on contour sets follow "relevant directions” for the target 7, (large steps).
explore "fast” the D — 1 contour sets of m,,

Connections with:

Andersen and Diaconis [2007] Hit and run as a unifying device.
Ludkin and Sherlock [2023] Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo
algorithm.

Elena Bortolato UPF-BSE 24 / 35
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Disintegration [Chang and Pollard, 1997]

For 7, on RP and g : RP? — R™ measurable, let gir, be the distribution of g(X) where
X ~ .
There exists a unique set of measures (7¢),cgm ON RP, called a g-disintegration of 7,
such that:

» m:({x:q(x) # t}) = 0 for gym,-a.e. t (concentration)

» for f : RP — R, non-negative and measurable,

/ F(x)ma(dx) = / ( / f(x)m(dx)> gema(dt).

Elena Bortolato UPF-BSE 25 /35
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Disintegration [Chang and Pollard, 1997]

For 7, on RP and g : RP? — R™ measurable, let gir, be the distribution of g(X) where

X ~ .
There exists a unique set of measures (7¢),cgm ON RP, called a g-disintegration of 7,

such that:
» m:({x:q(x) # t}) = 0 for gym,-a.e. t (concentration)
» for f : RP — R, non-negative and measurable,

/ F(x)ma(dx) = / ( / f(x)m(dx)> gema(dt).

By the co-area formula

me(x) o Ta(x) det(Vq(x)Va(x) ") 201y -1

Elena Bortolato UPF-BSE 25 /35
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Example taken from Au et al. (2023): 1000 iterations, initializing from N>(0,1).

Random walk HMC leapfrog

N —

Hug and Hop Walking on curves

~— e
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Some references |
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Context: submanifolds in likelihood-free inference

» Models with intractable posterior [Graham and Storkey, 2017]
» Link with Approximate Bayesian Computation: Sampling 6* ~ 7(0), u ~ p(u|0),

obs

y* = g(u,0%), retain 6* s.t. y* close to y°°s,
7r(9|y°bs)ABC x 7r(9)p(u|9)1l{|g(u,9),yobs‘§€}.
As € — 0 is defined on the submanifold
S={(9, u) €O x Ulg(0,u;) =y*™, i=1,...,n}.

By sampling on S and keeping only 6, we sample m(8]y°").

Elena Bortolato UPF-BSE 30 /35
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ABC-type problem: sum of lognormals
» 0 ~ Normal(0,1) (parameter)
» uy ~ Normal(0,1) for  =1,...,K (random input)
> y= 22(:1 exp(f + up) (relation between observation, parameter and input)

> With g: (uj1, ..., uk,0) — Zle exp(0+ ujy), i=1,...,n
g(uit,...,uix,0) =y =0, i=1,...,n (manifold constraints)

Ambient dimension: K x n+ 1. Number of constraints: n.

Elena Bortolato UPF-BSE 31/35



References

Context: submanifolds in Bayesian statistics

» Models with additive noise, with 7(6]y°b) strongly anisotropic

2 2 2
14 14 14
] * O = :
—1 -1 —1
-2 -2 —2 T
2 0 2 2 0 2 2 0 2
o y [

> State space augmentation: D = d + n = dim(6) + dim(y°®)[Au et al., 2023]

S={0, u)cOxU|gB,u) =y i=1,...,n}.
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Another view on the proposal

From x on RP (ambient space), the proposal z on T can be obtained either
» by drawing v ~ Normal(0, X) for a fixed

and computing z = x + U,v

» by drawing £ ~ Normal(0, X,)
. * C
with X, = (C’ Z)'
and computing z = x + P, Q,¢&,

with Qx the @ matrix of the QR decomposition of Vg(x)
P, = Ip — N, N, orthogonal projector onto 7,
N, the first m columns of Q,

Elena Bortolato UPF-BSE 33 /35
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Hug and Hop

Hug: propose moves nearly on same contour level. The state of the chain is (x, v).
The velocity v is updated as:

v, g(x! .
Vby1 = Vp — 2”2(><E)l]j\lg(x;’)’ with g(x) = Vlog m(x)
b

The position becomes xp11 = Xp + 0vpy1, b=1,..., B, ¢ is the step size,

Elena Bortolato UPF-BSE 34 /35
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Hug and Hop

Hug: propose moves nearly on same contour level. The state of the chain is (x, v).
The velocity v is updated as:

v, g(x! .
Vby1 = Vp — 2”2(><E)l]j\lg(x;’)’ with g(x) = Vlog m(x)
b

The position becomes xp11 = Xp + 0vpy1, b=1,..., B, ¢ is the step size,
Hop: jumps between contours:

2 2 2
H A —p / NT
X (Xl e ).
( g1 g
where, A controls jumps along the gradient, and p controls jumps perpendicular to the
gradient.
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Sampling on generic targets

Take g(6) = log(w(0)), define S = {0 € ©,u = g(0) € R|g(f) — u =0}

Sample on the graph of the function:

» d+1 dimensional state space, m = 1 constraint

ors » adapting to the curvature of the target without

ors computing second derivatives

0s B > target distribution on &

R A . *(\—1/2 ey 2
e mg(x) o m(x)G*(x) 77, G (x) = 1+ [[Va(x)[I*.

0
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