Sampling on Constrained Spaces

Elena Bortolato

Universitat Pompeu Fabra Barcelona School of Economics

SISBAYES 2025, Padova 4-5 September

Based on joint work with Pierre E. Jacob (ESSEC), Robin J. Ryder (Imperial College London)

(ㅁ▶ ◀畵 ▶ ◀불 ▶ ◀불 ▶ ○ 불 ○ 쒸익⊙

Elena Bortolato UPF-BSE 1 / 35

Overview

- Motivation
- Manifold MCMC methods
- Coupled markov chains
- 4 Sampling on *artificial* submanifolds

Elena Bortolato UPF-BSE 2 / 35

Sampling on Constrained Spaces: Why?

Many statistical problems involve **constraints** — on parameters, on data, or jointly on both. Closed-form solutions are often unavailable, making *sampling methods* essential.

(ㅁ▶ (큠) (글) (글) 글 19Q0

Elena Bortolato UPF-BSE 3 / 35

Sampling on Constrained Spaces: Why?

Many statistical problems involve **constraints** — on parameters, on data, or jointly on both. Closed-form solutions are often unavailable, making *sampling methods* essential.

In some cases, complex sampling problems can be **reformulated** as problems with artificial constraints, opening the door to new methodological tools.

Elena Bortolato UPF-BSE 3 / 35

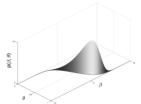
Overparametrized models [Bornn et al., 2019]

- ▶ Data with support s_1, \ldots, s_J , such that $Pr(y_i = s_i) = \theta_i$, nuisance parameters.
- \triangleright β parameter of interest (e.g. regression)
- \blacktriangleright priors on both β and θ , overparametrized!

Moment-type conditions

$$E_{y}[g(y),\beta] = \int g(y,\beta)f(dy) = \sum_{i=1}^{J} \theta_{i}g(s_{i},\beta) = 0$$





Example
$$(J = 2)$$
: $y \in \{0, 1\}$ parameters $\theta, 1 - \theta$

$$\{(\theta,\beta)\in\Theta\times\mathsf{B}|\beta=\log\left(\frac{\theta}{1-\theta}\right)\}$$

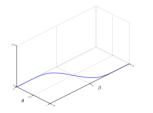
Elena Bortolato UPF-BSE 4 / 35

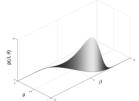
Overparametrized models [Bornn et al., 2019]

- ▶ Data with support s_1, \ldots, s_J , such that $Pr(y_i = s_i) = \theta_i$, nuisance parameters.
- \triangleright β parameter of interest (e.g. regression)
- \blacktriangleright priors on both β and θ , overparametrized!

Moment-type conditions

$$E_{y}[g(y),\beta] = \int g(y,\beta)f(dy) = \sum_{i=1}^{J} \theta_{i}g(s_{i},\beta) = 0$$





Example (J = 2): $y \in \{0, 1\}$ parameters $\theta, 1 - \theta$

$$\{(\theta, \beta) \in \Theta \times \mathsf{B} | \beta = \log\left(\frac{\theta}{1 - \theta}\right)\}$$

... also in Empirical likelihood, Econometrics [Gallant, 2023]

Elena Bortolato UPF-BSE 4 / 35

▶ Intractable likelihood: prior $\pi(\theta)$, random/model components $u \sim p(u|\theta)$, on

$$S = \{(\theta, u_i) \in \Theta \times U | g(\theta, u_i) = y_i^{\text{obs}}, i = 1, \dots, n\}.$$

and keeping only θ , we sample $\pi(\theta|y^{\text{obs}})$. [Graham and Storkey, 2017]

◆□▶ ◆圖▶ ◆差▶ ◆差▶ 差 釣Q@

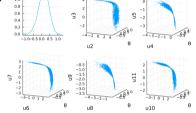
Elena Bortolato UPF-BSE 5 / 35

Intractable likelihood: prior $\pi(\theta)$, random/model components $u \sim p(u|\theta)$, on

substituting the substitution of
$$U \sim \rho(u|\theta)$$
, on $\mathcal{S} = \{(\theta, u_i) \in \Theta \times U | g(\theta, u_i) = y_i^{\mathsf{obs}}, i = 1, \ldots, n\}$. The substitution of θ , we sample $\pi(\theta|y^{\mathsf{obs}})$.

and keeping only θ , we sample $\pi(\theta|v^{\text{obs}})$.

[Graham and Storkey, 2017]



Similar reasoning for models with intractable prior:

$$S' = \{(\theta, u_i) \in \Theta \times U | y_i = g(u_i, \theta), q_i(y, \theta) + m_j(\theta) = 0, i = 1, ..., n, j = 1, ..., p\}.$$

[Bortolato and Ventura, 2024], q_i, m_i derivatives of loglikelihood/prior.

5 / 35 Elena Bortolato UPF-BSE

- Motivation
- 2 Manifold MCMC methods
- Coupled markov chains
- 4 Sampling on *artificial* submanifolds

Elena Bortolato UPF-BSE 6 / 35

Sampling probability distribution functions on submanifolds

Object of interest:

$$\pi(x) = \frac{f(x)1\{x \in S\}}{Z}\sigma_S$$
, $f(x) \ge 0$, Z normalizing constant,

$$S = \{x \in \mathbb{R}^D | q(x) = 0 \in \mathbb{R}^m\}, \text{ submanifold }$$

Object of interest:

$$\pi(x) = \frac{f(x)1\{x \in S\}}{Z}\sigma_S$$
, $f(x) \ge 0$, Z normalizing constant,

$$S = \{x \in \mathbb{R}^D | q(x) = 0 \in \mathbb{R}^m\}, \text{ submanifold }$$

Difficulties:

- 1. Z unknown
- 2. Proposing points in \mathbb{R}^D won't work.

Andersen, 1983, Rattle: A "velocity" version of the shake algorithm for molecular dynamics calculations.

Elena Bortolato UPF-BSE 7 / 35

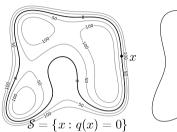
Random walk [Zappa et al., 2018]: define $\nabla q(x)$ gradient, $\mathcal{T}_x = \{x^* \in \mathbb{R}^D | \nabla q(x)^\top (x^* - x) = 0\}, d = D - m$.

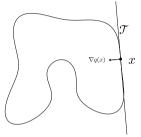
- 1. Start from $x \in \mathcal{S}$.
- 2. Compute U_x , an orthonormal basis of \mathcal{T}_x .
- 3. Draw d-dimensional $\nu \sim p_{\nu}$ and propose a step on \mathcal{T}_x : $x + U_x \nu$.
- 4. Follow the direction given by $\nabla q(x)$ to project on \mathcal{S} : $y = x + U_x \nu + \nabla q(x) \alpha$ for some α such that $y \in \mathcal{S}$ (Projection).
- 5. Check whether x can be reached from y (Reverse projection).
- 6. Accept/reject.

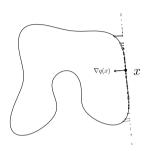
(ロ) (部) (注) (注) 注 の(の)

Elena Bortolato UPF-BSE 8 / 35

Projections

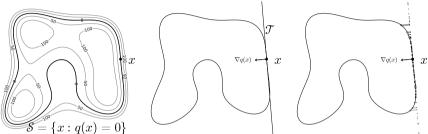






Elena Bortolato UPF-BSE

Frojections



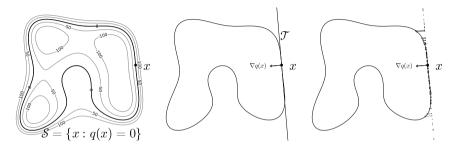
Projections (and reverse projections) employ Newton's method to find a root of

$$q(x + U_x \nu + \nabla q(x)\alpha)$$

moving $\alpha \in \mathbb{R}^m$.

<ロ > ← □ ト ← □ ⊢ ← □

Elena Bortolato UPF-BSE 9 / 35



Projections (and reverse projections) employ Newton's method to find a root of

$$q(x + U_x \nu + \nabla q(x)\alpha)$$

moving $\alpha \in \mathbb{R}^m$.

If a solution is not found, the chain remains at its current state.

Elena Bortolato UPF-BSE 9 / 35

A closer look at the proposal

The proposal distribution can be written as

$$q(x, dy) = r(x)\delta_x(dy) + (1 - r(x))\underbrace{|\det DG_x(y)|p_\nu(\nu)\sigma_{\mathcal{S}}(dy)}_{k(x, dy)}.$$
 (1)

 $DG_{\mathsf{x}}(y) = U_{\mathsf{x}}^{\top}U_{y}$ is the differential of the map G_{x} ,

$$G_{\mathcal{X}}(y) =: U_{\mathcal{X}}^{\top}(y - x) = \nu. \tag{2}$$

defines a one-to-one relation among y and ν .

(ロ) (部) (注) (注) 注 の(0)

Elena Bortolato UPF-BSE 10 / 35

Acceptance probability

Acceptance ratio evaluated only when the projection steps succeed

$$\frac{f(y)|\det DG_y(x)|p_\nu(\nu')}{f(x)|\det DG_x(y)|p_\nu(\nu)},$$

The determinants cancel out: $|\det U_x^\top U_y| = |\det U_y^\top U_x|$.

Elena Bortolato UPF-BSE 11 / 35

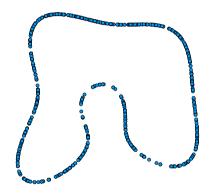
1. Computational cost: $O(m^2D)$

Elena Bortolato UPF-BSE 12 / 35

- 1. Computational cost: $O(m^2D)$
- 2. How long should the chain run?

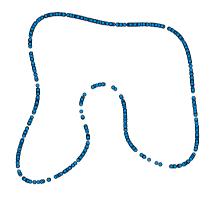
Elena Bortolato UPF-BSE 12 / 35

Uniform distribution on ${\cal S}$



Elena Bortolato UPF-BSE

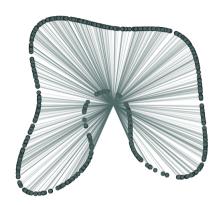
Uniform distribution on ${\cal S}$



converged?

Elena Bortolato UPF-BSE

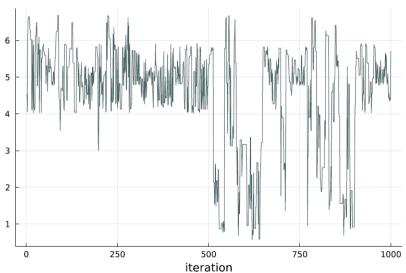
converged?



test function: $x \mapsto ||x||$

Elena Bortolato UPF-BSE 13 / 35

Traceplot of ||x||



Elena Bortolato UPF-BSE 14 / 35

- Motivation
- Manifold MCMC methods
- 3 Coupled markov chains
- 4 Sampling on *artificial* submanifolds

Elena Bortolato UPF-BSE 15 / 35

Coupled Markov chains on submanifolds

Produce pairs of MCMC chains (X_t) and (\tilde{X}_t) , with $\text{law}(X_t) = \text{law}(\tilde{X}_t)$ that after a random meeting time $\tau \in \mathbb{N}$ for all $t \geq \tau$, $X_t = \tilde{X}_{t-L}$.

Elena Bortolato UPF-BSE 16 / 35

Coupled Markov chains on submanifolds

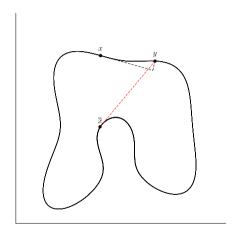
Produce pairs of MCMC chains (X_t) and (\tilde{X}_t) , with law $(X_t) = \text{law}(\tilde{X}_t)$ that after a random meeting time $\tau \in \mathbb{N}$ for all $t \geq \tau$, $X_t = \tilde{X}_{t-1}$.

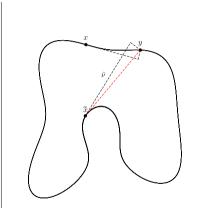
Monte Carlo estimates based on independent copies of τ :

- ▶ Bounds [Biswas et al., 2019] $|\pi_t \pi|_{TV} \leq \mathbb{E}\left[\max\left(0, \left\lceil \frac{\tau L t}{L} \right\rceil\right)\right], \forall t.$
- ▶ Unbiased estimates of functions h(X) [Glynn and Rhee, 2014][Jacob et al., 2020].
- ► Asymptotic variance of the chains [Douc et al., 2022].

Elena Bortolato UPF-BSE 16 / 35

Proposing the same point





$$\tilde{\nu} = G_{\tilde{x}}(y) = U_{\tilde{x}}^{\top}(y - \tilde{x})$$

Elena Bortolato UPF-BSE 17 / 35

Coupled transition kernels

$$q(x, dy) = r(x)\delta_x(dy) + (1 - r(x))k(x, dy),$$

$$q(\tilde{x}, dy) = r(\tilde{x})\delta_{\tilde{x}}(dy) + (1 - r(\tilde{x}))k(\tilde{x}, dy),$$

$$Y \sim q(x,dy)$$
 and $\tilde{Y} \sim q(\tilde{x},dy)$ s.t. $Y = \tilde{Y}$ sometimes

without evaluating r(x).

Elena Bortolato UPF-BSE 18 / 35

Coupling of proposals with point masses

Coupled transition kernels

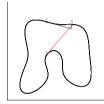
$$q(x, dy) = r(x)\delta_x(dy) + (1 - r(x))k(x, dy),$$

$$q(\tilde{x}, dy) = r(\tilde{x})\delta_{\tilde{x}}(dy) + (1 - r(\tilde{x}))k(\tilde{x}, dy),$$

 $Y \sim q(x,dy)$ and $\tilde{Y} \sim q(\tilde{x},dy)$ s.t. $Y = \tilde{Y}$ sometimes

without evaluating r(x).

- ▶ Draw $Y \sim q(x, dy)$, $W \sim \text{Uniform}(0, 1)$.
- ▶ If $Y \neq x$ and $W \leq k(\tilde{x}, Y)/k(x, Y)$ then (Y, Y)
- ► Else, enter while loop:
 - ▶ Draw $\tilde{Y} \sim q(\tilde{x}, dy)$.
 - ▶ If $\tilde{Y} = \tilde{x}$, return (Y, \tilde{Y}) .
 - ▶ Else draw $W^* \sim \mathsf{Uniform}(0,1)$.
 - ▶ If $W^* > k(x, \tilde{Y})/k(\tilde{x}, \tilde{Y})$, return (Y, \tilde{Y}) .



 $\tilde{\nu}$ used in $k(\tilde{x}, dy)$

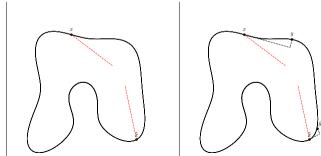
Elena Bortolato UPF-BSE 18 / 35

Reflection-contractive couplings

With the previous coupling...

- ▶ If chains are distant, they evolve independently
- ► Reflection couplings in the ambient space + rotation / projections help in obtaining meeting times faster

(Intuition)



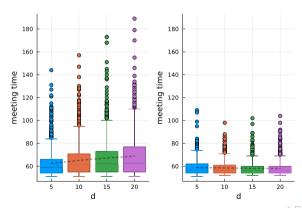
Elena Bortolato UPF-BSE 19 / 35

Scaling properties: sequence of Hyperspheres

Setting: Uniform distribution on $\mathcal{HS}^d = \{x \in \mathbb{R}^D \mid \sum_{i=1}^D x_i^2 = 1\}, d = D - 1 \in \{5, 10, 15, 20\}$

M Maximal coupling only

M+R Maximal coupling + reflections if $\|x - \tilde{x}\|_2^2 > 1/\sqrt{d} = \sigma$ (scale of the proposal kernel)

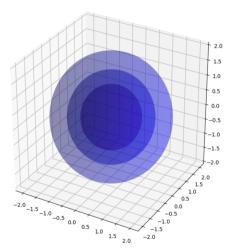


Elena Bortolato UPF-BSE 20 / 35

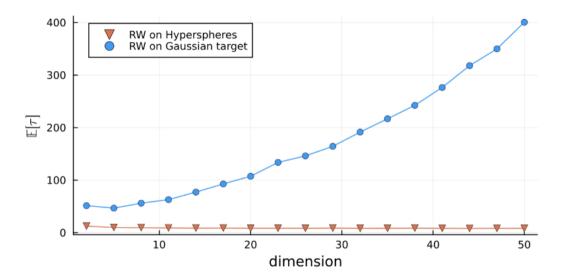
Can we use that beyond sampling on hyperspheres?

Elena Bortolato UPF-BSE 21 / 35

Can we use that beyond sampling on hyperspheres? Hyperspheres with different radii are level sets of the Gaussian...



Elena Bortolato UPF-BSE 21 / 35



Elena Bortolato UPF-BSE 22 / 35

- Motivation
- Coupled markov chains
- 4 Sampling on *artificial* submanifolds

イロト イ部ト イミト イラト

Elena Bortolato UPF-BSE 23 / 35 Taking $q(\cdot) := \pi_a(\cdot)$ the disintegration defines a distribution on the level sets.

Elena Bortolato UPF-BSE 24 / 35

Algorithm

- $\blacktriangleright \text{ fix } q_0 = q(x)$
- ▶ move on $S = \{x \in \mathcal{X} | q(x) q_0 = 0\}$ leaving π_t invariant.
- ▶ change level set leaving π_a invariant (e.g. random walk).

Algorithm

- $\blacktriangleright \text{ fix } q_0 = q(x)$
- ▶ move on $S = \{x \in \mathcal{X} | q(x) q_0 = 0\}$ leaving π_t invariant.
- ▶ change level set leaving π_a invariant (e.g. random walk).

Taking $q(\cdot) := \pi_a(\cdot)$ the disintegration defines a distribution on the level sets.

Algorithm

- $\blacktriangleright \text{ fix } q_0 = q(x)$
- ▶ move on $S = \{x \in \mathcal{X} | q(x) q_0 = 0\}$ leaving π_t invariant.
- ▶ change level set leaving π_a invariant (e.g. random walk).

Intuition

Moves on contour sets follow "relevant directions" for the target π_a (large steps).

◆ロ → ◆ 個 → ◆ 恵 → ● ● り へ で

Contour walk

Taking $q(\cdot) := \pi_a(\cdot)$ the disintegration defines a distribution on the level sets.

Algorithm

- ightharpoonup fix $q_0 = q(x)$
- ▶ move on $S = \{x \in \mathcal{X} | q(x) q_0 = 0\}$ leaving π_t invariant.
- \triangleright change level set leaving π_a invariant (e.g. random walk).

Intuition

Moves on contour sets follow "relevant directions" for the target π_a (large steps). explore "fast" the D-1 contour sets of π_a .

Elena Bortolato 24 / 35 UPF-BSE

Contour walk

Taking $q(\cdot) := \pi_a(\cdot)$ the disintegration defines a distribution on the level sets.

Algorithm

- $\blacktriangleright \text{ fix } q_0 = q(x)$
- ▶ move on $S = \{x \in \mathcal{X} | q(x) q_0 = 0\}$ leaving π_t invariant.
- ▶ change level set leaving π_a invariant (e.g. random walk).

Intuition

Moves on contour sets follow "relevant directions" for the target π_a (large steps). explore "fast" the D-1 contour sets of π_a ,

Connections with:

Andersen and Diaconis [2007] Hit and run as a unifying device.

Ludkin and Sherlock [2023] Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm.

Disintegration [Chang and Pollard, 1997]

For π_a on \mathbb{R}^D and $q: \mathbb{R}^D \to \mathbb{R}^m$ measurable, let $q \sharp \pi_a$ be the distribution of q(X) where $X \sim \pi_a$.

There exists a unique set of measures $(\pi_t)_{t\in\mathbb{R}^m}$ on \mathbb{R}^D , called a q-disintegration of π_a , such that:

- $\pi_t(\{x:q(x)\neq t\})=0$ for $q_{\sharp}\pi_a$ -a.e. t (concentration)
- lackbox for $f:\mathbb{R}^D o \mathbb{R}_+$ non-negative and measurable,

$$\int f(x)\pi_a(dx) = \int \left(\int f(x)\pi_t(dx)\right) q_{\sharp}\pi_a(dt).$$

(ロ > 《큠 > 《돌 > 《돌 > · 돌 · 씨오(?

Disintegration [Chang and Pollard, 1997]

For π_a on \mathbb{R}^D and $q: \mathbb{R}^D \to \mathbb{R}^m$ measurable, let $q \sharp \pi_a$ be the distribution of q(X) where $X \sim \pi_a$.

There exists a unique set of measures $(\pi_t)_{t\in\mathbb{R}^m}$ on \mathbb{R}^D , called a q-disintegration of π_a , such that:

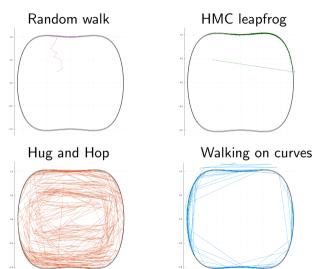
- $\blacktriangleright \pi_t(\{x:q(x)\neq t\})=0 \text{ for } q_{\sharp}\pi_a\text{-a.e. } t \text{ (concentration)}$
- for $f: \mathbb{R}^D \to \mathbb{R}_+$ non-negative and measurable,

$$\int f(x)\pi_a(dx) = \int \left(\int f(x)\pi_t(dx)\right) q_{\sharp}\pi_a(dt).$$

By the co-area formula

$$\pi_t(x) \propto \pi_{\mathsf{a}}(x) \det(\nabla q(x) \nabla q(x)^{\top})^{1/2} \sigma_{q(t)^{-1}}.$$

4 D M 4 D M 4 E M 4 E M 4 E M 4 E M 9 (*)



Under the support of CNS2022-135963 - MCIN/AE

イロト 不問 と 不高 と 不高 と Elena Bortolato UPF-BSE 27 / 35

- H. C. Andersen and P. Diaconis. Hit and run as a unifying device. Journal de la societe française de statistique & revue de statistique appliquee, 148(4):5-28, 2007.
- K. X. Au, M. M. Graham, and A. H. Thiery. Manifold lifting: scaling markov chain monte carlo to the vanishing noise regime. Journal of the Royal Statistical Society Series B: Statistical Methodology, page gkad023, 2023.
- N. Biswas, P. E. Jacob, and P. Vanetti. Estimating convergence of Markov chains with L-lag couplings. Advances in Neural Information Processing Systems, 32, 2019.
- L. Bornn, N. Shephard, and R. Solgi. Moment conditions and Bayesian non-parametrics. Journal of the Royal Statistical Society Series B: Statistical Methodology, 81(1):5-43, 2019.
- E. Bortolato. Advancement in distribution sampling for statistical inference, Chapters 4 and 5. PhD Thesis, 2024.
- E. Bortolato and L. Ventura. Objective priors for invariant e-values in the presence of nuisance parameters. *Entropy*, 26(1):58, 2024.

イロト 不問 と 不定 と 不定 と Elena Bortolato UPF-RSF 28 / 35

- R. Douc, P. E. Jacob, A. Lee, and D. Vats. Solving the poisson equation using coupled markov chains. *arXiv preprint arXiv:2206.05691*, 2022.
- A. R. Gallant. Variance–covariance from a Metropolis chain on a curved, singular manifold. *Journal of Econometrics*, 235(2):843–861, 2023.
- P. W. Glynn and C.-h. Rhee. Exact estimation for markov chain equilibrium expectations. *Journal of Applied Probability*, 51(A):377–389, 2014.
- M. Graham and A. Storkey. Asymptotically exact inference in differentiable generative models. In *Artificial Intelligence and Statistics*, pages 499–508. PMLR, 2017.
- P. E. Jacob, J. O'Leary, and Y. F. Atchadé. Unbiased markov chain monte carlo methods with couplings. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 82(3), 2020.
- M. Ludkin and C. Sherlock. Hug and hop: a discrete-time, nonreversible markov chain monte carlo algorithm. *Biometrika*, 110(2):301–318, 2023.
- E. Zappa, M. Holmes-Cerfon, and J. Goodman. Monte carlo on manifolds: sampling densities and integrating functions. *Communications on Pure and Applied Mathematics*, 71(12):2609–2647. 2018.

Context: submanifolds in likelihood-free inference

- ► Models with intractable posterior [Graham and Storkey, 2017]
- Link with Approximate Bayesian Computation: Sampling $\theta^* \sim \pi(\theta)$, $u \sim p(u|\theta)$, $y^* = g(u, \theta^*)$, retain θ^* s.t. y^* close to y^{obs} ,

$$\pi(heta|y^{\mathsf{obs}})^{\mathsf{ABC}} \propto \pi(heta) p(u| heta) \mathbb{1}_{\{|oldsymbol{g}(u, heta)-y^{\mathsf{obs}}|\leq \epsilon\}}.$$

As $\epsilon \to 0$ is defined on the submanifold

$$S = \{(\theta, u_i) \in \Theta \times U | g(\theta, u_i) = y_i^{\text{obs}}, i = 1, \dots, n\}.$$

By sampling on S and keeping only θ , we sample $\pi(\theta|y^{\text{obs}})$.

(ㅁ▶ (큠) (글) (글) 글 19Q0

ABC-type problem: sum of lognormals

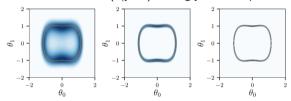
- \triangleright $\theta \sim \text{Normal}(0,1)$ (parameter)
- \blacktriangleright $u_{\ell} \sim \text{Normal}(0,1)$ for $\ell = 1, ..., K$ (random input)
- $y = \sum_{\ell=1}^{K} \exp(\theta + u_{\ell})$ (relation between observation, parameter and input)
- \blacktriangleright With $g:(u_{i1},\ldots,u_{iK},\theta)\mapsto\sum_{\ell=1}^K\exp(\theta+u_{i\ell}),\ i=1,\ldots,n$ $g(u_{i1}, \dots, u_{iK}, \theta) - v_i^{\text{obs}} = 0, \quad i = 1, \dots, n \text{ (manifold constraints)}$

Ambient dimension: $K \times n + 1$. Number of constraints: n.

Elena Bortolato UPF-BSE 31 / 35

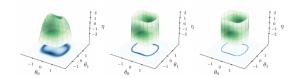
Context: submanifolds in Bayesian statistics

▶ Models with additive noise, with $\pi(\theta|y^{\text{obs}})$ strongly anisotropic



▶ State space augmentation: $D = d + n = \dim(\theta) + \dim(y^{\text{obs}})$ [Au et al., 2023]

$$S = \{(\theta, u_i) \in \Theta \times U | g(\theta, u_i) = y_i^{\text{obs}}, i = 1, \dots, n\}.$$



Another view on the proposal

From x on \mathbb{R}^D (ambient space), the proposal z on \mathcal{T}_x can be obtained either

- by drawing $u \sim \mathsf{Normal}(0, \Sigma)$ for a fixed Σ and computing $z = x + U_x \nu$
- by drawing $\xi \sim \mathsf{Normal}(0, \Sigma_a)$ with $\Sigma_a = \begin{pmatrix} \Sigma^\star & C \\ C' & \Sigma \end{pmatrix}$,

and computing $z = x + P_x Q_x \xi$,

with Q_x the Q matrix of the QR decomposition of $\nabla q(x)$ $P_x = I_D - N_x N_x'$ orthogonal projector onto \mathcal{T}_x , N_x the first m columns of Q_x

◆ロ → ◆ ● → ◆ き → ◆ き → りへの

Hug and Hop

Hug: propose moves nearly on same contour level. The state of the chain is (x, v). The velocity v is updated as:

$$v_{b+1} = v_b - 2 \frac{v_b^{\top} g(x_b')}{\|g(x_b')\|^2} g(x_b'), \text{ with } g(x) = \nabla \log \pi(x)$$

.

The position becomes $x_{b+1} = x_b + \delta v_{b+1}$, $b = 1, \dots, B$, δ is the step size,

Hug: propose moves nearly on same contour level. The state of the chain is (x, v). The velocity v is updated as:

$$v_{b+1} = v_b - 2 \frac{v_b^{\top} g(x_b')}{\|g(x_b')\|^2} g(x_b'), \quad \text{with } g(x) = \nabla \log \pi(x)$$

The position becomes $x_{b+1} = x_b + \delta v_{b+1}$, $b = 1, \dots, B$, δ is the step size, **Hop**: jumps between contours:

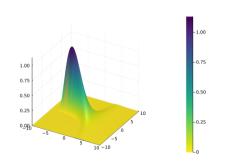
$$\mathbf{x} \sim \mathcal{N}\left(\mathbf{x}', \frac{\mu^2}{\|\mathbf{g}(\mathbf{x}')\|^2}\mathbf{I} + \frac{\lambda^2 - \mu^2}{\|\mathbf{g}(\mathbf{x}')\|^4}\mathbf{g}(\mathbf{x}')\mathbf{g}(\mathbf{x}')^{\top}\right),$$

where, λ controls jumps along the gradient, and μ controls jumps perpendicular to the gradient.

34 / 35 Elena Bortolato UPF-BSE

Take
$$g(\theta) = \log(\pi(\theta))$$
, define $S = \{\theta \in \Theta, u = g(\theta) \in \mathbb{R} | g(\theta) - u = 0\}$

Sample on the graph of the function:



ightharpoonup d+1 dimensional state space, m=1 constraint

- adapting to the curvature of the target without computing second derivatives
- ightharpoonup target distribution on ${\cal S}$

$$\pi_{g}(x) \propto \pi(x)G^{*}(x)^{-1/2}, G^{*}(x) = 1 + \|\nabla q(x)\|^{2}.$$

(ロ) (御) (注) (注) (注) (2)