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Sampling on Constrained Spaces: Why?

Many statistical problems involve constraints — on parameters, on data, or jointly on
both. Closed-form solutions are often unavailable, making sampling methods essential.

In some cases, complex sampling problems can be reformulated as problems with arti-
ficial constraints, opening the door to new methodological tools.
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Overparametrized models [Bornn et al., 2019]
▶ Data with support s1, . . . , sJ , such that Pr(yi = sj) = θj , nuisance parameters.

▶ β parameter of interest (e.g. regression)

▶ priors on both β and θ, overparametrized!

Moment-type conditions

Ey [g(y), β] =

∫
g(y , β)f (dy) =

J∑
j=1

θjg(sj , β) = 0

.

Example (J = 2): y ∈ {0, 1}
parameters θ, 1− θ

{(θ, β) ∈ Θ× B|β = log

(
θ

1− θ

)
}

... also in Empirical likelihood, Econometrics [Gallant, 2023]
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Manifold from data generating equation

▶ Intractable likelihood: prior π(θ), random/model
components u ∼ p(u|θ), on

S = {(θ, ui ) ∈ Θ× U|g(θ, ui ) = yobsi , i = 1, . . . , n}.

and keeping only θ, we sample π(θ|yobs).
[Graham and Storkey, 2017]

▶ Similar reasoning for models with intractable prior:

S ′ = {(θ, ui ) ∈ Θ×U|yi = g(ui , θ), qj(y , θ)+mj(θ) = 0, i = 1, . . . , n, j = 1, . . . , p}.

[Bortolato and Ventura, 2024], qj ,mj derivatives of loglikelihood/prior.

Elena Bortolato UPF–BSE 5 / 35
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Sampling probability distribution functions on submanifolds

Object of interest:

π(x) =
f (x)1{x ∈ S}

Z
σS , f (x) ≥ 0, Z normalizing constant,

S = {x ∈ RD |q(x) = 0 ∈ Rm}, submanifold

Difficulties:

1. Z unknown

2. Proposing points in RD won’t work.

Andersen, 1983, Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations.

Elena Bortolato UPF–BSE 7 / 35
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Metropolis–Rosenbluth–Teller–Hastings on submanifolds

Random walk [Zappa et al., 2018]:
define ∇q(x) gradient, Tx = {x∗ ∈ RD |∇q(x)⊤(x∗ − x) = 0}, d = D −m.

1. Start from x ∈ S.

2. Compute Ux , an orthonormal basis of Tx .

3. Draw d-dimensional ν ∼ pν and propose a step on Tx : x + Uxν.

4. Follow the direction given by ∇q(x) to project on S: y = x + Uxν +∇q(x)α for some α
such that y ∈ S (Projection).

5. Check whether x can be reached from y (Reverse projection).

6. Accept/reject.

Elena Bortolato UPF–BSE 8 / 35
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Projections

Projections (and reverse projections) employ Newton’s method to find a root of

q(x + Uxν +∇q(x)α)

moving α ∈ Rm.

If a solution is not found, the chain remains at its current state.

Elena Bortolato UPF–BSE 9 / 35



Motivation Manifold MCMC methods Coupled markov chains Sampling on *artificial* submanifolds References

Projections

Projections (and reverse projections) employ Newton’s method to find a root of

q(x + Uxν +∇q(x)α)

moving α ∈ Rm.

If a solution is not found, the chain remains at its current state.

Elena Bortolato UPF–BSE 9 / 35



Motivation Manifold MCMC methods Coupled markov chains Sampling on *artificial* submanifolds References

Projections

Projections (and reverse projections) employ Newton’s method to find a root of

q(x + Uxν +∇q(x)α)

moving α ∈ Rm.

If a solution is not found, the chain remains at its current state.

Elena Bortolato UPF–BSE 9 / 35



Motivation Manifold MCMC methods Coupled markov chains Sampling on *artificial* submanifolds References

A closer look at the proposal

The proposal distribution can be written as

q(x , dy) = r(x)δx(dy) + (1− r(x)) | detDGx(y)|pν(ν)σS(dy)︸ ︷︷ ︸
k(x ,dy).

. (1)

DGx(y) = U⊤
x Uy is the differential of the map Gx ,

Gx(y) =: U⊤
x (y − x) = ν. (2)

defines a one-to-one relation among y and ν.
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Acceptance probability

Acceptance ratio evaluated only when the projection steps succeed

f (y)| detDGy (x)|pν(ν ′)
f (x)| detDGx(y)|pν(ν)

,

The determinants cancel out: | detU⊤
x Uy | = | detU⊤

y Ux |.
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Efficiency - Convergence ?

1. Computational cost: O(m2D)

2. How long should the chain run?

Elena Bortolato UPF–BSE 12 / 35
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Uniform distribution on S

converged? test function: x 7→ ∥x∥
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Traceplot of ∥x∥
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Coupled Markov chains on submanifolds

Produce pairs of MCMC chains (Xt) and (X̃t), with law(Xt) = law(X̃t) that after a random
meeting time τ ∈ N for all t ≥ τ , Xt = X̃t−L.

Monte Carlo estimates based on independent copies of τ :

▶ Bounds [Biswas et al., 2019] |πt − π|TV ≤ E
[
max

(
0,
⌈
τ−L−t

L

⌉)]
,∀t.

▶ Unbiased estimates of functions h(X ) [Glynn and Rhee, 2014][Jacob et al., 2020].

▶ Asymptotic variance of the chains [Douc et al., 2022].

Elena Bortolato UPF–BSE 16 / 35
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Proposing the same point

ν̃ = Gx̃(y) = U⊤
x̃ (y − x̃)

Elena Bortolato UPF–BSE 17 / 35



Motivation Manifold MCMC methods Coupled markov chains Sampling on *artificial* submanifolds References

Coupling of proposals with point masses
Coupled transition kernels

q(x , dy) = r(x)δx(dy) + (1− r(x))k(x , dy),

q(x̃ , dy) = r(x̃)δx̃(dy) + (1− r(x̃))k(x̃ , dy),

Y ∼ q(x , dy) and Ỹ ∼ q(x̃ , dy) s.t. Y = Ỹ sometimes

without evaluating r(x).

▶ Draw Y ∼ q(x , dy), W ∼ Uniform(0, 1).

▶ If Y ̸= x and W ≤ k(x̃ ,Y )/k(x ,Y ) then (Y ,Y )

▶ Else, enter while loop:

▶ Draw Ỹ ∼ q(x̃ , dy).
▶ If Ỹ = x̃ , return (Y , Ỹ ).
▶ Else draw W ∗ ∼ Uniform(0, 1).
▶ If W ∗ > k(x , Ỹ )/k(x̃ , Ỹ ), return (Y , Ỹ ).

ν̃ used in k(x̃ , dy)

Elena Bortolato UPF–BSE 18 / 35
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Reflection-contractive couplings
With the previous coupling. . .
▶ If chains are distant, they evolve independently
▶ Reflection couplings in the ambient space + rotation / projections help in

obtaining meeting times faster

(Intuition)

Elena Bortolato UPF–BSE 19 / 35
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Scaling properties: sequence of Hyperspheres
Setting: Uniform distribution on HSd = {x ∈ RD |

∑D
i=1 x

2
i = 1}, d = D − 1 ∈ {5, 10, 15, 20}

M Maximal coupling only

M+R Maximal coupling + reflections if ∥x − x̃∥22 > 1/
√
d = σ (scale of the proposal kernel)

Elena Bortolato UPF–BSE 20 / 35
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Can we use that beyond sampling on hyperspheres?

Hypershperes with different radii are level sets of the Gaussian...
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Contour walk
Taking q(·) := πa(·) the disintegration defines a distribution on the level sets.

Algorithm Bortolato [2024]

▶ fix q0 = q(x)

▶ move on S = {x ∈ X |q(x)− q0 = 0} leaving πt invariant.

▶ change level set leaving πa invariant (e.g. random walk).

Intuition
Moves on contour sets follow ”relevant directions” for the target πa (large steps).
explore ”fast” the D − 1 contour sets of πa,

Connections with:

Andersen and Diaconis [2007] Hit and run as a unifying device.
Ludkin and Sherlock [2023] Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo
algorithm.

Elena Bortolato UPF–BSE 24 / 35
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Disintegration [Chang and Pollard, 1997]

For πa on RD and q : RD → Rm measurable, let q♯πa be the distribution of q(X ) where
X ∼ πa.
There exists a unique set of measures (πt)t∈Rm on RD , called a q-disintegration of πa,
such that:

▶ πt({x : q(x) ̸= t}) = 0 for q♯πa-a.e. t (concentration)

▶ for f : RD → R+ non-negative and measurable,∫
f (x)πa(dx) =

∫ (∫
f (x)πt(dx)

)
q♯πa(dt).

By the co-area formula

πt(x) ∝ πa(x) det(∇q(x)∇q(x)⊤)1/2σq(t)−1 .

Elena Bortolato UPF–BSE 25 / 35
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Example taken from Au et al. (2023): 1000 iterations, initializing from N2(0, 1).

Random walk HMC leapfrog

Hug and Hop Walking on curves

Elena Bortolato UPF–BSE 26 / 35
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Thanks for your attention!
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Context: submanifolds in likelihood-free inference

▶ Models with intractable posterior [Graham and Storkey, 2017]

▶ Link with Approximate Bayesian Computation: Sampling θ∗ ∼ π(θ), u ∼ p(u|θ),
y∗ = g(u, θ∗), retain θ∗ s.t. y∗ close to yobs,

π(θ|yobs)ABC ∝ π(θ)p(u|θ)1{|g(u,θ)−yobs|≤ϵ}.

As ϵ → 0 is defined on the submanifold

S = {(θ, ui ) ∈ Θ× U|g(θ, ui ) = yobs
i , i = 1, . . . , n}.

By sampling on S and keeping only θ, we sample π(θ|yobs).

Elena Bortolato UPF–BSE 30 / 35
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ABC-type problem: sum of lognormals

▶ θ ∼ Normal(0, 1) (parameter)

▶ uℓ ∼ Normal(0, 1) for ℓ = 1, . . . ,K (random input)

▶ y =
∑K

ℓ=1 exp(θ + uℓ) (relation between observation, parameter and input)

▶ With g : (ui1, . . . , uiK , θ) 7→
∑K

ℓ=1 exp(θ + uiℓ), i = 1, . . . , n

g(ui1, . . . , uiK , θ)− yobsi = 0, i = 1, . . . , n (manifold constraints)

Ambient dimension: K × n + 1. Number of constraints: n.
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Context: submanifolds in Bayesian statistics

▶ Models with additive noise, with π(θ|yobs) strongly anisotropic

▶ State space augmentation: D = d + n = dim(θ) + dim(yobs)[Au et al., 2023]

S = {(θ, ui ) ∈ Θ× U|g(θ, ui ) = yobs
i , i = 1, . . . , n}.
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Another view on the proposal

From x on RD (ambient space), the proposal z on Tx can be obtained either

▶ by drawing ν ∼ Normal(0,Σ) for a fixed Σ

and computing z = x + Uxν

▶ by drawing ξ ∼ Normal(0,Σa)

with Σa =

(
Σ⋆ C
C ′ Σ

)
,

and computing z = x + PxQxξ,

with Qx the Q matrix of the QR decomposition of ∇q(x)
Px = ID − NxN

′
x orthogonal projector onto Tx ,

Nx the first m columns of Qx
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Hug and Hop

Hug: propose moves nearly on same contour level. The state of the chain is (x , v).
The velocity v is updated as:

vb+1 = vb − 2
v⊤b g(x ′b)

∥g(x ′b)∥2
g(x ′b), with g(x) = ∇ log π(x)

.
The position becomes xb+1 = xb + δvb+1, b = 1, . . . ,B, δ is the step size,

Hop: jumps between contours:

x ∼ N
(
x ′,

µ2

∥g(x ′)∥2
I +

λ2 − µ2

∥g(x ′)∥4
g(x ′)g(x ′)⊤

)
,

where, λ controls jumps along the gradient, and µ controls jumps perpendicular to the
gradient.
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Sampling on generic targets

Take g(θ) = log(π(θ)), define S = {θ ∈ Θ, u = g(θ) ∈ R|g(θ)− u = 0}

Sample on the graph of the function:

▶ d+1 dimensional state space, m = 1 constraint

▶ adapting to the curvature of the target without
computing second derivatives

▶ target distribution on S

πg (x) ∝ π(x)G ∗(x)−1/2,G ∗(x) = 1 + ∥∇q(x)∥2.
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