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B-SPLINE NONPARAMETRIC REGRESSION

Non Parametric Regression

Yi (s) =
p∑

j=1
Vijij (s) + Yi (s)

• Yi (s) ∈ L2 (R), for i = 1, . . . ,n
• ij (s), B-spline basis of order 3, for j = 1, . . . ,p
• Yi

iid∼ N
(
0,g−2

Y

)
Among the priors for βs:

−→ First and second order random walks (Lang and Brezger 2004)
−→ Gaussian-Wishart process having a Matérn covariance kernel

(Yang et al. 2017)
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support

• Each spline represents a
portion of the domain

Our task is equivalent to learn the dependence structure among
the basis expansion coefficients (Vs)
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GAUSSIAN GRAPHICAL PRIOR FOR β

• graph G = (V , E ), V = {1, . . . , p} and E ⊆ V × V
• βi = ( Vi1, . . . ,Vip )>, i = 1, . . . ,n

β1, . . . ,βn | µ,K iid∼ Np

(
µ,K−1

)
Vi ⊥⊥ Vj | βV\{i,j } ⇐⇒ Kij = 0 ⇐⇒ (i,j) ∉ E
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PRECISION MATRIX PRIOR

G-Wishart distribution (Roverato 2002)

K | G ∼ G-Wishart (b,D)

P (K | G) = IG (b,D)−1 |K | b−2
2 exp

{
−1

2 tr (KD)
}
, K ∈ PG

−→ Same kernel of Wishart distribution

−→ PG = { K precision matrix : Klm = 0, ∀(i,j) ∉ E }

−→ IG (b,D) is, in general, not known in closed and tractable
aaaa analytic form. More in Atay-Kayis and Massam (2005),
aaaa Uhler et al. (2018) and Mohammadi et al. (2021)
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GRAPH PRIOR

Let G be the space of all possible undirected graphs having p
nodes, hence |G| = 2(

p
2)

• Uniform prior:
cU (G) = 1

|G|
• Bernoulli prior:

P ( (i,j) ∈ E ) = \, 1 ≤ i < j ≤ p

cB (G) = \ |E | (1 − \) (
p
2)−|E |

−→ Assume a priori independence between the edges
−→ Jones et al. (2005) suggest \ = 2/(p − 1)
−→ Multiplicity correction prior: place a Beta hyperprior on \

(Scott and Carvalho 2008)



ESTIMATED QUANTITIES

Figure 5 in Waghmare and Panaretos (2024)

Kartik G Waghmare, Victor M Panaretos, Continuously indexed graphical models, Journal of the Royal Statistical

Society Series B: Statistical Methodology, Volume 87, Issue 1, February 2025, Pages 211–231,
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NODE PARTITION

{   {   
{   {   {   {   {   {   {   • Experts identified 9 intervals

of scientific interest
• Nodes are partitioned in 9

contiguous sub-groups
• In Colombi et al. (2024), we:

→ include such prior
knowledge in the
graphical model

→ look for connections
among the groups
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LARGE-SCALE STRUCTURE

Following van den Boom et al. (2023)

• Currently: focus on single-edge estimation
• Next: set up a graphical model that also incorporates the

identification of structures on a larger scale

We want to identify groups of nodes which form
block structures in the graph

• Let M be the (unknown) number of groups
• z =

(
z1, . . . ,zp

)
∈ {1, . . . ,M }p : i ∼ j ⇐⇒ zi = zj

P (G,K ,z) ∝ P (K | G)P (G | z)P (z)
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STOCHASTIC BLOCK MODELS PRIOR

• Borrow ideas from network analysis
• SBM (Holland et al. 1983) are the most widely used models

to discover latent structures

Stochastic Equivalence
The probability of an edge only depends on the group mem-
bership of the nodes.

i ∼ j ⇐⇒ P ( (i,s) ∈ E) = P ( (j,s) ∈ E)

• Let Q be a M × M symmetric
matrix, Qrs ∈ (0,1)
P ( (i,j) ∈ E | z,Q ) ind

= Qzizj

Qrs
ind∼ Beta(a,b)
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PARTITION PRIOR

• We want to learn z and M from the data
• van den Boom et al. (2023) builds upon the degree-corrected

SBM proposed in Tan and Iorio (2019)
• The Extended SBM framework (Legramanti et al. 2022)

encompasses any Gibbs-type prior ranging from the Infinite
relational model (Kemp et al. 2006) to the MFM-SBM (Geng
et al. 2019)

Node Exchangeability

Gibbs-type priors assume that the nodes can be arbitrarily
relabeled
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NODE PARTITION

{   {   
{   {   {   {   {   {   {   

• Each node represents a band
of the spectrum

• The bands have a precise
meaning and a natural
ordering

• We work under the
constraint that the blocks
must be contiguous



ADMISSIBLE PARTITIONS PRIOR

• Martínez and Mena (2014) introduced the notion of
admissible partitions

• Let dp = {C1, . . . ,CM } be a partition of p nodes in M groups
→ where Cm = {j : zj = m}

• dp is admissible ⇐⇒ ∀x ∈ Ci , y ∈ Cj , i < j implies x < y
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ADMISSIBLE PARTITIONS PRIOR

P
(
dp

)
= p′(n1, . . . , nM ) ={( n

n1,...,nM

) 1
M !p(n1, . . . , nM ), dp admissible

0, dp not admissible

• p(n1, . . . , nM ) can be any eppf
• Employing a Pitman–Yor process (Perman et al. 1992)

p′(n1, . . . , nM )

=
p!
M !

∏M−1
i=1 (\ + if)
(\ + 1) (p−1)

M∏
j=1

(1 − f) (nj−1)

nj
1(

dp is admissible
)



GIBBS SAMPLING
−→ Exploit conjugacy to get rid of Q

P (G | z) =

M∏
u=1

M∏
v=u

B (U + Suv , V + S★
uv)

B (U,V)

−→ Sampling Graph and Precision Matrix
G and K , given z, are sampled using a modified version of a
Birth-and-Death chain (Mohammadi and Wit (2015))

Birth rate ∝ P (G+e | z)
P (G | z) =

Suv + U

S★
uv + V

Death rate ∝ P (G−e | z)
P (G | z) =

S★
uv + V

Suv + U

−→ Sampling the Random Partition
Conditionally on G, we can sample z through an adaptive
split and merge sampler (Benson et al. (2018))
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RESULTS
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• 4 groups detected
• 5 groups is also supported by the data
• The case of one single community has almost zero posterior

probability mass
−→ We are improving the previous analysis of

Codazzi et al. (2022) and Colombi et al. (2024)



WRAPPING UP

−→ Graphical representation of the conditional independence
structure of the basis expansion coefficients

−→ Novel framework for SBM prior in Gaussian graphical
model with ordered nodes

−→ Improved interpretability of short- and long-term interactions
among portions of the spectrum

What’s next

−→ Achieving better scaling as the number of nodes increases

Codazzi et al. (2022) Colombi et al. (2024) Working paper
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MYTHBUSTER

”SBM are employed to cluster the nodes into groups with sparser
inter-group connections compared to more dense within-group
connectivities”

Figure 5 in Larremore et al. (2013)

Larremore, Daniel & Clauset, Aaron & Buckee, Caroline. (2013). A Network Approach to Analyzing Highly
Recombinant Malaria Parasite Genes. PLoS computational biology.
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MYTHBUSTER

• ”The concept of stochastic equivalence in itself does not
require that the nodes in the same group are more connected
with themselves, than with nodes in other groups”
(Lee and Wilkinson 2019)

• The diagonal elements of Q are not necessarily higher than
the off-diagonal ones

• SBM are a general framework that accommodates for many
latent structure such as dis-assortative, core-periphery,
weak-community (Legramanti et al. 2022)

• See Amongero and De Blasi (2024) for a Bayesian approach
for Assortative SMB
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MYTHBUSTER

Figure 2c in Legramanti et al. (2022)

Sirio Legramanti, Tommaso Rigon, Daniele Durante, David B. Dunson Extended stochastic block models with

application to criminal networks, The Annals of Applied Statistics
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