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Multiple Ising Models

• Graphical models are effective tools to
• model complex relationships in multivariate distributions of a set of variables
• provide a graphical representation of their conditional independence structure

• Multiple graphical models for Gaussian random variables have been widely studied
• Guo et al. (2011), Danaher et al. (2014), Peterson et al. (2015), Ha et al. (2021)
• they can capture the heterogeneity of the data involved in more realistic settings

• There have been only few proposals for multinomial sampling models
• Hojsgaard (2003), Corander (2003), Nyman et al. (2014, 2016).

• Multiple Ising models:
• More general, allow context-specific independences to vary not only with respect to

adjacent vertices.
• Model the heterogeneity induced in a set of binary variables by external factors.
• Factors may influence the joint dependence relationships represented by a set of graphs

across different groups.
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Notation

Let

• G (x) = (V ,E (x)): a graph with

• V = {1, 2, . . . , p}: a set of vertices
• E (x): a set of edges which depends on x ∈ X :

• if (r , j) ∈ E (x) there is an edge between r and j in G (x)
• if (r , j) /∈ E (x) then the two nodes are disjointed in G (x).

• YV | X = x : a random vector

• X : a random categorical variable or external factor not included in V .
Variable X has q different levels x ∈ X , or profiles.

Missing edges in G correspond to conditional independencies for the joint distribution of
YV | X = x , i.e. r , j /∈ E (x) =⇒ Yr ⊥⊥ Yj | {YV \(i,j) ,X = x}
Goal: Explore how YV | X = x changes under different profiles
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Bayesian model selection for Ising multiple graphs
Multiple undirected graphs for binary data.

Figure: Example with p = 10 variables and q = 3 levels of X
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Model

YV are binary random variables

YV (x) = YV | X = x ∼ Ising(λx)

with canonical parameter λx = [λrj ,x ]r ,j∈V ∈ Rp+(p×(p−1))/2.

Missing edges in G (x) correspond to zero pairwise log-linear interactions, since
Yr ⊥⊥Yj |{YV \r ,j ,X = x} if and only if λrj ,x = 0, for any x ∈ X
The likelihood is:

l(λx | YV (x)) =
nx∏
i=1

1

Ψ(λx)
exp


p∑

r=1

λrr ,xy
i
r ,x +

p∑
r=1

∑
j<i

λrj ,xy
i
r ,xy

i
j ,x


with y ir ,x the i th row of YV (x).
Challenge: Ψ(λx) is hard to compute.
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Normalizing constant Ψ(λx)

Challenge: Ψ(λx) is hard to compute.

Ψ(λx) =
∑

y i
x∈{0,1}p

exp


p∑

r=1

λrr ,xy
i
r ,x +

p∑
r=1

∑
j<r

λrj ,xy
i
r ,xy

i
j ,x


Solutions:

1. Conjugate priors for low-dimensional graphs: Fully Bayesian (FB)

2. Quasi-likelihood approach for high-dimensional graphs: Approximate Bayesian (AB)
(Bhattacharyya and Atchade 2019)
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Approximate Bayesian (AB)
Express the r th node conditional likelihood for λr ,x ∈ Rp, r ∈ V and for any x ∈ X , as

pr (YV (x)|λr ,x) =
nx∏
i=1

1

Ψi
r ,x(λr ,x)

exp

λrr ,xy
i
r ,x +

∑
j<r

λrj ,xy
i
r ,xy

i
j ,x

 ,

with a normalization constant equal to

Ψi
r ,x(λr ,x) = 1 + exp

λrr ,x +
∑
j<r

λrj ,xy
i
j ,x

 , x ∈ X .

Approximate the likelihood with a quasi-likelihood:

pq(YV (x) | λx) =

p∏
r=1

pr (YV (x) | λr ,x), x ∈ X ,

The inference on λx ∈ Rp+(p×(p−1))/2 simplifies into p separable sub-problems on Rp.
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λrj ,x Priors

Challenge: Encourage sparse graphs, for interpretability

Solution: Add sparsity-induced priors

1. For p ≤ 10: Diaconis & Ylvisaker (1973) prior:

p(λx | δx ) = C(sx , αx )
−1 exp


∑
r

λrr,x srr,x +
∑
r<j

δrj,xλrj,x srj,x − gx log

 ∑
{Ix\y∅,x}

exp

∑
r

λrr,x +
∑
r<j

δrj,xλrj,x



 ,

where C (sx , αx) is an unknown normalization constant that depends on the
hyperparameters gx ∈ R and sx = [srj ,x ]r ,j∈V , sx ∈ Rp+(p×(p−1))/2.

2. For p > 10: George & McCulloch (1993) Normal spike-and-Slab prior:

p(λrj ,x | δrj ,x , γ0, γ1) = δrj ,xN(λrj ,x ; 0, ρ) + (1− δrj ,x)N(λrj ,x ; 0, γ),

with ρ >> γ > 0
δrj ,x ∈ {0, 1} an indicator parameter for the inclusion of λrj ,x .
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δrj ,x Prior

Challenge: Consider δrj ,x such that λrj ,x considers the similarities among all graphs G (x)

Solution: Consider a Markov Random Field (MRF) prior (Peterson et al., 2015) on the
graph structures

p(δrj ,x | δrj ,−x , νrj , θx) =
exp[δrj ,x(νrj + 1⊤θxδrj ,x)]

1 + exp[δrj ,x(νrj + 1⊤θxδrj ,−x)]
, x ∈ X ,

νrj ∈ R is a sparsity parameter specific for the edge (r , j) , νrj ∼ Beta(a, b)
θx = [θxh]h∈{X\x}, where θxh ∈ R represents the relatedness between G (x) and G (h)
Note: that this MRF prior is an Ising model → greatly simplifies the computations
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Network similarity
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θxh Priors

Challenge: Measure pairwise similarity of the G (x),G (h) with a flexible prior that:

• shares information across groups if they are truly similar,

• does not fakely enforce similarities when different.

Solution: Model θxh with a George & McCulloch (1993) Spike-and-Slab prior, with a
point mass spike:

p(θxh) | ϵxh = (1− ϵxh)δ0 + ϵxhGamma(θxh | α, β),

with ϵxh ∼ Bernoulli(ϵxh | ω).
Note: This is a Spike-and-non-local-Slab prior Johnson & Rossell (2010, 2012),
Avalos-Pacheco et.al. (2022)
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Posterior inference
1: while t < T do
2: FB:

è Update the graph G (x) for each profile x ∈ X
via stochastic search of the graph space, using a Laplace approximation
of the marginal likelihood

AB:
è Update the graph G (x) and the canonical parameter λx

sampling them from the conditional quasi-posterior distribution
FB & AB:

è Update the graph similarity θxh and the latent indicators ϵxh for 1 ≤ x < h ≤ q
via Metropolis-Hastings to sample them from their conditional posterior distribution
ç Perform: a between-model and a within-model move (to improve mixing)
è Update the edge-specific parameter νrj for 1 ≤ r < j ≤ p.
via Metropolis-Hastings to sample them from their conditional posterior distribution

set t = t + 1
3: end while

R-code available at: https://github.com/AleAviP/BMIM
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Simulation results
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Simulation results: low dimensional data (p = 10)

Matthews correlation coefficient

Model Scenario (A) Scenario (B) Scenario (C) Scenario (D)

SL 0.773(0.048) 0.811(0.058) 0.739(0.062) 0.762(0.067)
DSSL 0.983(0.020) 0.589(0.060) 0.518(0.087) 0.714(0.040)
ABS 0.734(0.070) 0.761(0.058) 0.674(0.078) 0.712(0.070)
AB 0.814(0.036) 0.808(0.060) 0.744(0.050) 0.772(0.057)
FBS 0.796(0.038) 0.822(0.070) 0.749(0.054) 0.785(0.049)
FB 0.858(0.042) 0.804(0.064) 0.764(0.074) 0.812(0.041)

F1 score

Model Scenario (A) Scenario (B) Scenario (C) Scenario (D)

SL 0.812(0.040) 0.838(0.052) 0.770(0.055) 0.794(0.062)
DSSL 0.986(0.017) 0.665(0.057) 0.614(0.074) 0.774(0.033)
ABS 0.753(0.068) 0.778(0.051) 0.685(0.074) 0.728(0.068)
AB 0.839(0.035) 0.828(0.048) 0.769(0.048) 0.797(0.056)
FBS 0.825(0.035) 0.844(0.066) 0.781(0.047) 0.812(0.044)
FB 0.880(0.036) 0.830(0.055) 0.792(0.065) 0.833(0.043)

• Seplogit (SL): Meinshausen and Bühlmann (2006)
• DataShared-SepLogit (DSSL): Ollier and Viallon. (2017)
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Simulation results: high dimensional data (p = 50)

Matthews correlation coefficient

Model Scenario (A) Scenario (B) Scenario (C) Scenario (D)

SL 0.916(0.010) 0.911(0.011) 0.915(0.012) 0.916(0.008)
DSSL 0.988(0.007) 0.798(0.031) 0.740(0.017) 0.838(0.018)
ABS 0.920(0.010) 0.914(0.012) 0.910(0.010) 0.915(0.010)
AB 0.947(0.008) 0.924(0.011) 0.931(0.010) 0.935(0.009)

F1 score

Model Scenario (A) Scenario (B) Scenario (C) Scenario (D)

SL 0.919(0.010) 0.914(0.010) 0.917(0.012) 0.919(0.007)
DSSL 0.988(0.007) 0.798(0.032) 0.731(0.021) 0.838(0.018)
ABS 0.922(0.010) 0.915(0.012) 0.911(0.010) 0.917(0.010)
AB 0.949(0.008) 0.927(0.011) 0.933(0.010) 0.937(0.009)
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GSS datasets (https://gssdataexplorer.norc.org/)

1. Confidence in government institutions
• study whether confidence in government agencies can be influenced by the user’s

time-spent on the web.
• 10 binary variables that reflect the opinion of distrust (0) or at least some trust (1)
• 450 individuals divided according weekly surfing time:

• Web = 0 for at most 5 hours
• Web = 1 for more than 5 hours and at most 15 hours
• Web = 2 for more than 15 hours

2. Public spending opinion
• study if the opinions on public spending in US for some crucial social issues can be

considerably divergent at different ages
• 18 binary variables that reflect the opinion of underfunded (1) or not underfunded (0)
• 768 individuals categorized by age:

• Age = 0 age 36 or younger
• Age = 1 older than 36 years and of age 55 or younger
• Age = 2 for the ones older than 55 years.
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Confidence in government institutions

AB

ABS

FB

FBS

SL

DSSL

Web = 0 Web = 1 Web = 2

expected FDR: ABS = 0.22, AB = 0.20, FBS = 0.14, FB = 0.12 37 / 40



Public spending opinion
Age = 0 Age = 1 Age = 2

AB

ABS

SL

DSSL

expected FDR: ABS = 0.22, AB = 0.18 38 / 40



Conclusions

• Efficiently link and borrow strength across related sub-populations
• We have introduced two Bayesian multiple Ising graphical inference methods:

1. The FB method
• based on conjugate priors

2. The AB method
• based on a quasi-likelihood approach → computational non-expensive

• We use of a MRF prior on the binary indicator of edge inclusion
• encourage the selection of the same edges in related graphs
• can learn which sup-populations are similar, and which ones are not.

• We show the usefulness of our approaches in two public opinion studies in the US
• R-code available at: https://github.com/AleAviP/BMIM
• Alejandra Avalos-Pacheco, Andrea Lazzerini, Monia Lupparelli, Francesco C Stingo,
Bayesian inference of multiple Ising models for heterogeneous public opinion survey
networks, Journal of the Royal Statistical Society Series C: Applied Statistics,
2025; qlaf028, https://doi.org/10.1093/jrsssc/qlaf028
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Thank you! Grazie!
7@AleAviP

�alejandra.avalos pacheco@jku.at
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