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Motivation

Name

Public spending opinion on

trans

Welfare
highways and bridges

social security

mass transportation

parks and recreation

assistance for childcare

supporting scientific research

developing alternative energy sources
foreign aid

military, armaments and defense
improving the conditions of African Americans
space exploration program

improving and protecting environment
improving and protecting nations health
solving problems of big cities

halting rising crime rate

dealing with drug addiction

improving nations education system
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Multiple Ising Models

® Graphical models are effective tools to

® model complex relationships in multivariate distributions of a set of variables
® provide a graphical representation of their conditional independence structure
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Multiple Ising Models

® Graphical models are effective tools to
® model complex relationships in multivariate distributions of a set of variables
® provide a graphical representation of their conditional independence structure
® Multiple graphical models for Gaussian random variables have been widely studied
® Guo et al. (2011), Danaher et al. (2014), Peterson et al. (2015), Ha et al. (2021)
® they can capture the heterogeneity of the data involved in more realistic settings
® There have been only few proposals for multinomial sampling models
® Hojsgaard (2003), Corander (2003), Nyman et al. (2014, 2016).
e Multiple Ising models:
® More general, allow context-specific independences to vary not only with respect to
adjacent vertices.
® Model the heterogeneity induced in a set of binary variables by external factors.
® Factors may influence the joint dependence relationships represented by a set of graphs
across different groups.
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Notation

Let

G(x) = (V, E(x)): a graph with
V ={1,2,...,p}: a set of vertices

® E(x): a set of edges which depends on x € X:

® if (r,j) € E(x) there is an edge between r and j in G(x)
® if (r,j) ¢ E(x) then the two nodes are disjointed in G(x).

Yv | X = x: a random vector

® X: a random categorical variable or external factor not included in V.
Variable X has g different levels x € X, or profiles.

Missing edges in G correspond to conditional independencies for the joint distribution of
Y X =xlerj¢EXx) = Y, LY;|{Yy,,,X=x}
Goal: Explore how Yy | X = x changes under different profiles
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Bayesian model selection for Ising multiple graphs

Multiple undirected graphs for binary data.

Figure: Example with p = 10 variables and g = 3 levels of X
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Model

Y\ are binary random variables

Yv(x) = Yv | X = x ~ Ising(\)

with canonical parameter A\, = [\ ], jev € RPHPX(P=1))/2,
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Model

Y\ are binary random variables

Yv(x) = Yv | X = x ~ Ising(\)

with canonical parameter A\, = [\ «]rjev € RPH(Px(p=1))/2
Missing edges in G(x) correspond to zero pairwise log-linear interactions, since
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Model

Y\ are binary random variables

Yv(x) = Yv | X = x ~ Ising(\)
with canonical parameter A\, = [\ x|, jev € RPH(PX(P=1))/2

Missing edges in G(x) correspond to zero pairwise log-linear interactions, since

Y ALY [{Yv\rj, X = x} if and only if \,; , =0, for any x € &
The likelihood is:

Ny

/()\X | YV(X)) H exp Z)\rrxyrx+zz)‘0 Xyrxij

i=1 r=1 j<i
with y/ , the ih row of Yy (x).
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Model

Y\ are binary random variables

Yv(x) = Yv | X = x ~ Ising(\)
with canonical parameter A\, = [\ ], jev € RPHPX(P=1))/2,

Missing edges in G(x) correspond to zero pairwise log-linear interactions, since

Y ALY [{Yv\rj, X = x} if and only if \,; , =0, for any x € &
The likelihood is:

Ny

/()\X | YV(X)) H exp Z)\rrxyrx+zz)‘0 Xyrxij

i=1 r=1 j<i
with y/ . the i row of Yy(x).
Challenge: W(\) is hard to compute.
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Normalizing constant W()\,)

Challenge: W(\) is hard to compute.

p p
TERED ST SLURIIES 9 SRRV

yie{0,1}r r=1 r=1 j<r
Solutions:
1. Conjugate priors for low-dimensional graphs: Fully Bayesian (FB)

2. Quasi-likelihood approach for high-dimensional graphs: Approximate Bayesian (AB)
(Bhattacharyya and Atchade 2019)
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Approximate Bayesian (AB)

Express the rth node conditional likelihood for Arx €RP, re V and forany x € X, as

Nx

1 . .
Pr( YV(X)‘AHX) = H Vi (n L) exp )‘”,Xyrl,x + Z )‘rj,Xyrl,xyjI,x )
i=1 r,x( r,X) j<r
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Approximate Bayesian (AB)

Express the rth node conditional likelihood for Arx €RP, re V and forany x € X, as

Nx

Pr(Yv(x)|Arx) = H v (n) P ArroYrx § :)‘daxyrl,xyfx '
i=1 r,x( hX)

j<r
with a normalization constant equal to

wi,x(Ar,X) =1+exp )\rr,x + Z )\rJ-,ij,X , xeX.
j<r
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Approximate Bayesian (AB)

Express the rth node conditional likelihood for Arx €RP, re V and forany x € X, as

Nx

PV )A) = [T gy &P § Amoioe 2 e
i=1 r,x( r7X) j<r

with a normalization constant equal to

wi,x(Ar,X) =1+exp )\rr,x + Z )\rJ-,ij,X , xeX.
j<r
Approximate the likelihood with a quasi-likelihood:
P

pa(Vu(x) | A) = [ pr(Yv() [ M), x € X,

r=1
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Approximate Bayesian (AB)

Express the rth node conditional likelihood for Arx €RP, re V and forany x € X, as

Nx

pr(Yv(¥)[Arx) = [ 1 V() P MoV D MooV (5
r,x

=1 X j<r
with a normalization constant equal to
wi,x(Ar,X) =1+exp )\rr,x + Z )\,j,xyji,x , x e X.
j<r
Approximate the likelihood with a quasi-likelihood:
P
pa(Vv(x) [ A) = [T pr(Yv(x) [ M), x €2,
r=1

The inference on A, € RPH(Px(P—1))/2 simplifies into p separable sub-problems on RP.
19/40



Arjx Priors

Challenge: Encourage sparse graphs, for interpretability
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Arjx Priors

Challenge: Encourage sparse graphs, for interpretability
Solution: Add sparsity-induced priors
1. For p < 10: Diaconis & Ylvisaker (1973) prior:

P(Ax | 8x) = Clsx, ax) "t exp {Z ArrxSrex F D 81 xNrj xS x — 8x log { ST exp (Z A+ 5U.XA,1,X>} } ,
r } r

r<i {Zx\vp x r<j

where C(sy, ax) is an unknown normalization constant that depends on the
hyperparameters g, € R and s, = [s;j x]rjev. Sx € RpP+(px(p—1))/2
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Arjx Priors

Challenge: Encourage sparse graphs, for interpretability
Solution: Add sparsity-induced priors
1. For p < 10: Diaconis & Ylvisaker (1973) prior:

P | 6x) = Clse, ax) L exp {Z ArroxSrrox + D 8 xAj xSrjx — &x log { ST exp (Z A+ 6U.XA4,X>} } ,
r } r r<j

r<j {Zx\vp x

where C(sy, ax) is an unknown normalization constant that depends on the
hyperparameters g, € R and s, = [s;j x]rjev. Sx € RpP+(px(p—1))/2

2. For p > 10: George & McCulloch (1993) Normal spike-and-Slab prior:
P(Aijx | 0rjxs 705 71) = 0 x N(Ajxi 0, p) + (1 = 0 x )N(Arj x; 0,7),

with p >>~ >0
0rj,x € {0,1} an indicator parameter for the inclusion of A ..
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O, .x Prior

Challenge: Consider §,; . such that A, considers the similarities among all graphs G(x)
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O, .x Prior

Challenge: Consider §,; . such that A, considers the similarities among all graphs G(x)
Solution: Consider a Markov Random Field (MRF) prior (Peterson et al., 2015) on the
graph structures

exp[drj (g + 17 0x0p7,4)]

p 5r',x 5r',—xal/r'79x = ) xeX,
(O [ 0 5o 0x) 1+ exp[d, (v + 17650, )]
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O, .x Prior

Challenge: Consider §,; . such that A, considers the similarities among all graphs G(x)
Solution: Consider a Markov Random Field (MRF) prior (Peterson et al., 2015) on the
graph structures

exp0yjx (Vi + 17058, )]

p 5r',x 5r',—xal/r'79x = ) xeX,
(O [ 0 5o 0x) 1+ exp[d, (v + 17650, )]

vyj € R is a sparsity parameter specific for the edge (r,j) , v,j ~ Beta(a, b)
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O, .x Prior

Challenge: Consider §,; . such that A, considers the similarities among all graphs G(x)
Solution: Consider a Markov Random Field (MRF) prior (Peterson et al., 2015) on the
graph structures

ex 5r'x Vyj + 1T9x5r X
P(5rj,x ’ (50_7_)(’1/0_,9)() _ P[ 5, ( j = s )] : X € X,
1+ exp[5,j,x(u,j +1 Qxérj,,x)]

vyj € R is a sparsity parameter specific for the edge (r,j) , v,j ~ Beta(a, b)
Ox = [Oxnlhe{x\x}, Where O, € R represents the relatedness between G(x) and G(h)
Note: that this MRF prior is an Ising model — greatly simplifies the computations
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Network similarity
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0., Priors

Challenge: Measure pairwise similarity of the G(x), G(h) with a flexible prior that:
® shares information across groups if they are truly similar,

® does not fakely enforce similarities when different.
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0., Priors

Challenge: Measure pairwise similarity of the G(x), G(h) with a flexible prior that:
® shares information across groups if they are truly similar,
® does not fakely enforce similarities when different.

Solution: Model 6,5, with a George & McCulloch (1993) Spike-and-Slab prior, with a
point mass spike:

P(Oxh) | €xn = (1 — €xn)do + exnGamma(byy | @, B),

with €, ~ Bernoulli(ey, | w).
Note: This is a Spike-and-non-local-Slab prior Johnson & Rossell (2010, 2012),
Avalos-Pacheco et.al. (2022)
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Posterior inference

1: while t < T do

2:  FB:
© Update the graph G(x) for each profile x € X

via stochastic search of the graph space, using a Laplace approximation

of the marginal likelihood

AB:
=~ Update the graph G(x) and the canonical parameter A\,

sampling them from the conditional quasi-posterior distribution

FB & AB:
<~ Update the graph similarity 6,5 and the latent indicators e, for 1 < x < h < g

via Metropolis-Hastings to sample them from their conditional posterior distribution
2 Perform: a between-model and a within-model move (to improve mixing)
= Update the edge-specific parameter v,; for 1 < r < j < p.
via Metropolis-Hastings to sample them from their conditional posterior distribution
sett=t+1
3: end while
R-code available at: https://github.com/AleAviP/BMIM
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https://github.com/AleAviP/BMIM

Simulation results

Scenario (A)

G(1)

Scenario (

G(1) °T 6 EEETC))

Scenario (D)

G(0) G(3) 32/40



Simulation results: low dimensional data (p = 10)

Matthews correlation coefficient

Model

Scenario (A)

Scenario (B)

Scenario (C

Scenario (D)

SL
DSSL
ABS
AB
FBS
FB

0.773(0.048)
0.983(0.020)
0.734(0.070)
0.814(0.036)
0.796(0.038)
0.858(0.042)

0.811(0.058)
0.589(0.060)
0.761(0.058)
0.808(0.060)
0.822(0.070)
0.804(0.064)

)
0.739(0.062)
0.518(0.087)
0.674(0.078)
0.744(0.050)
0.749(0.054)
0.764(0.074)

0.762(0.067)
0.714(0.040)
0.712(0.070)
0.772(0.057)
0.785(0.049)
0.812(0.041)

F1 score

Model

Scenario (A)

Scenario (B)

Scenario (C

Scenario (D)

SL
DSSL
ABS
AB
FBS
FB

0.812(0.040)
0.986(0.017)
0.753(0.068)
0.839(0.035)
0.825(0.035)
0.880(0.036)

0.838(0.052)
0.665(0.057)
0.778(0.051)
0.828(0.048)
0.844(0.066)
0.830(0.055)

)
0.770(0.055)
0.614(0.074)
0.685(0.074)
0.769(0.048)
0.781(0.047)
0.792(0.065)

0.794(0.062)
0.774(0.033)
0.728(0.068)
0.797(0.056)
0.812(0.044)
0.833(0.043)

® Seplogit (SL): Meinshausen and Biihlmann (2006)
¢ DataShared-SepLogit (DSSL): Ollier and Viallon. (2017)
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Simulation results: high dimensional data (p = 50)

Matthews correlation coefficient

Model Scenario (A) Scenario (B) Scenario (C) Scenario (D)
SL 0.916(0.010) 0.911(0.011) 0.915(0.012) 0.916(0.008)
DSSL 0.988(0.007) 0.798(0.031) 0.740(0.017) 0.838(0.018)
ABS 0.920(0.010) 0.914(0.012) 0.910(0.010) 0.915(0.010)
AB 0.947(0.008) 0.924(0.011) 0.931(0.010) 0.935(0.009)
F1 score
Model Scenario (A) Scenario (B) Scenario (C) Scenario (D)
SL 0.919(0.010) 0.914(0.010) 0.917(0.012) 0.919(0.007)
DSSL 0.988(0.007) 0.798(0.032) 0.731(0.021) 0.838(0.018)
ABS 0.922(0.010) 0.915(0.012) 0.911(0.010) 0.917(0.010)
AB 0.949(0.008) 0.927(0.011) 0.933(0.010) 0.937(0.009)
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GSS datasets (https://gssdataexplorer.norc.org/)

1. Confidence in government institutions

® study whether confidence in government agencies can be influenced by the user’s
time-spent on the web.
® 10 binary variables that reflect the opinion of distrust (0) or at least some trust (1)
® 450 individuals divided according weekly surfing time:
® Web = 0 for at most 5 hours
® Web = 1 for more than 5 hours and at most 15 hours
® Web = 2 for more than 15 hours
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GSS datasets (https://gssdataexplorer.norc.org/)

1. Confidence in government institutions

® study whether confidence in government agencies can be influenced by the user’s
time-spent on the web.
® 10 binary variables that reflect the opinion of distrust (0) or at least some trust (1)
® 450 individuals divided according weekly surfing time:
® Web = 0 for at most 5 hours
® Web = 1 for more than 5 hours and at most 15 hours
® Web = 2 for more than 15 hours

2. Public spending opinion
® study if the opinions on public spending in US for some crucial social issues can be
considerably divergent at different ages
® 18 binary variables that reflect the opinion of underfunded (1) or not underfunded (0)
® 768 individuals categorized by age:
® Age =0 age 36 or younger
® Age = 1 older than 36 years and of age 55 or younger
® Age = 2 for the ones older than 55 years.
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Confidence in government institutions

Web=0 Web=1 Web =2

expected FDR: ABS = 0.22, AB = 0.20, FBS = 0.14, FB = 0.12
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Public spending opinion

Age 0

expected FDR: ABS = 0.22, AB = 0.18 3840



Conclusions

o Efficiently and borrow strength across related sub-populations
® \We have introduced two Bayesian multiple Ising graphical inference methods:
1. The FB method
® based on conjugate priors
2. The AB method
® based on a quasi-likelihood approach — computational non-expensive
® \We use of a MRF prior on the binary indicator of edge inclusion
® encourage the selection of the same edges in related graphs
® can learn which sup-populations are similar, and which ones are not.
® \We show the usefulness of our approaches in two public opinion studies in the US
® R-code available at: https://github.com/AleAviP/BMIM
® Alejandra Avalos-Pacheco, Andrea Lazzerini, Monia Lupparelli, Francesco C Stingo,
Bayesian inference of multiple Ising models for heterogeneous public opinion survey
networks, Journal of the Royal Statistical Society Series C: Applied Statistics,
2025; qlaf028, https://doi.org/10.1093/]jrsssc/qlaf028
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https://github.com/AleAviP/BMIM

Thank you! Grazie!

WOAIeAviP
alejandra.avalos_pacheco@jku.at
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